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ABSTRACT 
 

An interval total t coloring of a graph G  is a total 
coloring of  with colors 1,  such that at least one 
vertex or edge of  is colored by color 

−
G 2, , t…

G ,  1, 2, ,i i t= … , 
and the edges incident to each vertex  together 

with  are colored by  consecutive colors, where 

 is the degree of the vertex  in . In this paper 
interval total colorings of bipartite graphs are investigated. 

( )v V G∈

v ( ) 1Gd v +

( )Gd v v G
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1. INTRODUCTION 
 
All graphs considered in this paper are finite, undirected 

and have no loops or multiple edges. Let  and 

denote the sets of vertices and edges of a graph G , 

respectively. The degree of a vertex  is denoted by 

, the maximum degree of a vertex of - by 

( )V G
( )E G

( )v V G∈

( )Gd v G ( )GΔ  
and the chromatic index of - by G ( )Gχ′ . A proper edge 
coloring of a graph  is a coloring of the edges of G  such 
that no two adjacent edges receive the same color. If 

G
α  is a 

proper edge coloring of G  and  then ( )v V G∈ ( ),vS α  

denotes the set of colors of edges incident to . A total 
coloring of a graph  is a coloring of its vertices and edges 
such that no adjacent vertices, edges, and no incident vertices 
and edges obtain the same color. The total chromatic number 

v
G

( )Gχ′′  is the smallest number of colors needed for total 
coloring of G . If α  is a total coloring of a graph G  then 

( )vα and ( )eα  denote the color of a vertex ( )v V G∈  and 

the color of an edge ( )e E G∈  in the coloring α , 
respectively. For a total coloring α  of a graph G  and for 
any  define the set ( )v V G∈ [ ],vS α  as follows:  

[ ] { } { }, ( ) ( )   is incident to .v v e eS α α α≡ ∪ v  
For two integers  the set a b≤ { }, 1, ,a a b+ …  is denoted 

by [ ],a b . 
 An interval total t − coloring [5,6] of a graph G  is a 
total coloring of G  with colors 1,  such that at least 
one vertex or edge of G  is colored by color 

, and the edges incident to each vertex 

2, , t…

,  1, 2, ,i i t= …

( )v V G∈  together with  are colored by v ( ) 1Gd v +  
consecutive colors.  
 For 1t ≥  let  denote the set of graphs which have an 

interval total t
tT

− coloring, and assume: 
1

t
t≥

≡ ∪ TT . For a 

graph G ∈ T  the least value of t , for which tG ∈ T , is  

denoted by . ( )w Gτ

 In this paper interval total colorings of bipartite graphs 
are investigated.  
 The terms and concepts that we do not define can be 
found in [10,11]. 
 
 
2. MAIN RESULTS 
 
Lemma 1. For any ,  and 2n ≥ nP ∈T ( ) 3nw Pτ = .  
Proof. Let 

( ) { }1 2, , ,n nv v vV P = …  and ( ) ( ){ }1, 1 1n i iv v i nE P += ≤ ≤ − . 

Clearly, lemma is true for the case .  2n =
Assume that . 3n ≥

Case 1: 3n k=  or 3 2n k= + , . k N∈
Define a total coloring α  of the graph  in the 

following way: 
nP

1. for 1, 2, ,i n= …  

2, if 0(mod3),
1, if 1(mod3),
3, if 2(mod3),

( )i

i
i
i

vα
⎧ ≡
⎪

= ≡⎨
⎪ ≡⎩

 

2. for 1, 2, , 1j n= −…  

( )( )1

3, if 0(mod3),
2, if 1(mod3),
1, if 2(mod3).

,j j

j
v v j

j
α +

⎧ ≡
⎪

≡⎨
⎪ ≡⎩

=  

Case 2: 3 1n k= + , k N∈ . 

Define a total coloring α  of the graph  in the 
following way: 

nP

1. for 1, 2, ,i n= …  

3, if 0(mod3),
2, if 1(mod3),
1, if 2(mod3),

( )i

i
i
i

vα
⎧ ≡
⎪

= ≡⎨
⎪ ≡⎩

 

2. for 1, 2, , 1j n= −…  



( )( )1

1, if 0(mod3),
3, if 1(mod3),
2, if 2(mod3).

,j j

j
v v j

j
α +

⎧ ≡
⎪

≡⎨
⎪ ≡⎩

=  

It is easy to see that α  is an interval total 3 − coloring 

of the graph  and, therefore,  and nP nP ∈T ( ) 3nw Pτ = . 

■ 
Lemma 2. For any ,  and  3n ≥ nC ∈ T

( ) 3, if 3 , ,
4, otherwise.n

n k k N
w Cτ

⎧ = ∈⎪
= ⎨
⎪⎩

 

Proof. Let 
( ) { }1 2, , ,n nv v vV C = …  and 

( ) ( ){ } ( ){ }1 1, , 1 1n i i nv v i n v vE C += ≤ ≤ − ∪ . 

First of all, we prove that  has an interval total 

coloring, if  and  has an interval total 

coloring, if . We distinguish three cases. 

nC

3 − 3 ,  ,n k k N= ∈ nC

4 − 3 ,  n k k N≠ ∈

Case 1: , . 3n k= k N∈
Define a total coloring α  of the graph  as follows: nC
1. for  1, 2, ,i n= …

2, if 0(mod3),
1, if 1(mod3),
3, if 2(mod3),

( )i

i
i
i

vα
⎧ ≡
⎪

= ≡⎨
⎪ ≡⎩

 

2. for 1, 2, , 1j n= −…  

( )( )1

3, if 0(mod3),
2, if 1(mod3),
1, if 2(mod3),

,j j

j
v v j

j
α +

⎧ ≡
⎪

≡⎨
⎪ ≡⎩

=  

3. ( )( )1 3., nv vα =  

Case 2: ,  and  is even. 3n k≠ k N∈ n
Define a total coloring α  of the graph  as follows: nC
1. for  1, 2, ,i n= …

4, if 0(mod 2),
1, if 1(mod 2),

( )i

i
i

vα
⎧ ≡⎪

= ⎨
≡⎪⎩

 
2. for 1, 2, , 1j n= −…  

( )( )1

2, if 0(mod 2),
3, if 1(mod 2),

,j j

j
v v

j
α +

⎧ ≡⎪
⎨

≡⎪⎩
=  

3. ( )( )1 2., nv vα =  

Case 3: ,  and  is odd. 3n k≠ k N∈ n
Define a total coloring α  of the graph  as follows: nC
1. for  1, 2, ,i n= …

4, if 0(mod 2), 1,
1, if 1(mod 2), ,
2, if 1,
3, if ,

( )i

i i
i i n
i n
i n

vα

⎧ ≡ ≠
⎪

≡ ≠⎪
= ⎨

= −⎪
⎪ =⎩

n−

 

2. for 1, 2, , 1j n= −…  

( )( )1

2, if 0(mod 2), 1,
3, if 1(mod 2),
4, if 1,

,j j

j j
v v j

j n
α +

⎧ ≡ ≠
⎪

≡⎨
⎪ = −⎩

=
n−

 

3. ( )( )1 2., nv vα =  

It is easy to check that α  is an interval total 

3 − coloring of the graph , if  and an 

interval total 

nC 3 ,  ,n k k N= ∈

4 − coloring of the graph , if nC

3 ,  .n k k N≠ ∈  Hence, for any , 3n ≥ nC ∈T  and 

( ) 3nw Cτ ≤ , if 3 ,  ,n k k N= ∈  and ( ) 4nw Cτ ≤ , if 
3 ,  .n k k N≠ ∈  On the other hand, since 

( ) ( ) 3, if 3 , ,
4, otherwise, n n

n k k N
w C Cτ χ

⎧ = ∈⎪
≥ = ⎨

⎪⎩
′′ [11] 

then ( ) 3nw Cτ ≥ , if 3 ,  ,n k k N= ∈  and ( ) 4nw Cτ ≥ , if 
3 ,  .n k k N≠ ∈  

■ 
Every connected component of a graph G  with 

( ) 2GΔ ≤  is a path or a cycle, so from lemma 1 and 2 any 
component can be intervally colored with no more than  
colors. Thus we have 

4

  
Theorem 1. If  is a graph with  then G ( ) 2GΔ ≤ G ∈ T  
and ( ) 4Gwτ ≤ .  

 
In [9] A.S. Shashikyan proved the following: 
 

Theorem 2. If  is a bipartite graph with G ( ) 3GΔ ≤  then 

G ∈ T  and ( ) 5Gwτ ≤ .  

Now we consider bipartite graphs with .  ( ) 4GΔ ≤

Theorem 3. If ( ), ,U V EG =  is a bipartite graph with 

( ) 4GΔ ≤  and  has a factor then G 2 − G ∈ T  and 
( ) 6Gwτ ≤ .  

Proof. First of all, note that if  then this theorem 
follows from theorem 2. 

( ) 3GΔ ≤

Assume that ( ) 4GΔ = . 
Let F  denotes the factor of the graph . Clearly, 2 − G

F consists of even cycles. The edges of these cycles can be 
colored alternately by  and . Consider the subgraph 

 of the graph G . Clearly,  is a bipartite graph 
and all its vertices have degree 1  or , therefore its 
components are paths or even cycles. The edges of these paths 
and cycles we color alternately by 1  and . Let 

2 3
\G F \G F

2

4 α  be an 
obtained edge coloring. 

Now define a total coloring β  of the graph  in the 
following way: 

G

1. for every u U∈   

( )
( ) [ ] ( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
( ) [ ]

1, if , 1,4  or , 1,3  or , 1,2

2, if , 2,4  or , 2,3 ,

3, if , 3,4 ,

S u S u S u

u S u S u

S u

α α α

α α

α

β

⎧ = =
⎪⎪

= = =⎨
⎪

=⎪⎩

,=

 

2. for every v V∈   

( )
( ) [ ]
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ] ( ) [ ]

4, if , 1,2 ,

5, if , 1,3  or , 2,3 ,

6, if , 1,4  or , 2,4  or , 3,4 ,

S v

v S v S v

S v S v S v

α

α α

α α α

β

⎧ =
⎪⎪

= = =⎨
⎪

= =⎪⎩ =

 

3. for every ( )e E G∈  ( ) ( ) 1e eβ α= + . 
It is easy to see that β  is an interval total 6 − coloring 

of the graph G  and, therefore,  and G ∈ T ( ) 6Gwτ ≤ .  



■ 
Theorem 4. If ( ), ,U V EG =  is a bipartite graph with 

 and no vertex of degree  then ( ) 4GΔ ≤ 3 G ∈ T  and 
.  ( ) 6Gwτ ≤

Proof. First of all, note that if  then this theorem 
follows from theorem 2. 

( ) 3GΔ ≤

Assume that . ( ) 4GΔ =
From the results of [2] it follows that  has an interval 

edge coloring [1]. Let 
G

4 − α  be this edge coloring. For a 
graph  define an edge coloring G β  as follows: for every 

 ( )e E G∈ ( ) ( ) 1e eβ α= + . 

First, we color the vertices of  with  
( ) in the following way: 

G ( ) 2Gd w ≥
( )w V G∈

1. for every u U   ∈

( )
( ) [ ]

( ) [ ]
( ) [ ]

1, if ( ) 4 or , 2,3 ,

2, if , 3,4 ,

3, if , 4,5 ,

Gd u S u

u S u

S u

β

β

β

γ

⎧ = =
⎪⎪

= =⎨
⎪

=⎪⎩

 

2. for every   v V∈

( )
( ) [ ]
( ) [ ]

( ) [ ]

4, if , 2,3 ,

5, if , 3,4 ,

6, if ( ) 4 or , 4,5 .G

S v

v S v

d v S v

β

β

β

γ

⎧ =
⎪⎪

= =⎨
⎪

= =⎪⎩

 

Next, we color the vertices of G  with ( ) 1Gd w ≤  
( ) in the following way: ( )w V G∈

1. for every u U   ∈

( )
( )( ) ( )( ){ } ( )

( )
( )( ) ( )

1, if ( ) 0,

, , 1, , 1 \ , 

            if ( ) 1, , ( ), where ( ) 2,

, 1, if ( ) ( ) 1 and , ( ),

G

G G

G G

d u

s s u v u v v
u

d u u v E G d v

u v d u d v u v E G

β β γ

β

ϕ

⎧ =
⎪
⎪ ∈ − +⎪

= ⎨
= ∈ ≥⎪

⎪
− = = ∈⎪⎩

 

2. for every   v V∈

( )
( )( ) ( )( ){ } ( )

( )
( )( ) ( )

4, if ( ) 0,

, , 1, , 1 \ , 

            if ( ) 1, , ( ), where ( ) 2,

, 1, if ( ) ( ) 1 and , ( ).

G

G

G G

d v

t t u v u v u
v

d v u v E G d u

u v d u d v u v E G

β β γ

β

ϕ

⎧ =
⎪
⎪ ∈ − +⎪

= ⎨
G= ∈ ≥⎪

⎪
+ = = ∈⎪⎩

 

Finally, define a total coloring ψ  of the graph  as 
follows: 

G

1. for every  ( )e E G∈ ( ) ( )e eψ ϕ= , 

2. for every ( )    ( )w V G∈ ( ) 2Gd w ≥ ( ) ( )w wψ γ= , 

3. for every ( )    ( )w V G∈ ( ) 1Gd w ≤ ( ) ( )w wψ ϕ= . 
It is not difficult to see that ψ  is an interval total 

coloring of the graph G  with no more than 6  colors. Thus 

 and .  G ∈ T ( ) 6≤Gwτ

■ 
Theorem 5. Let ( ), ,U V EG =  be a bipartite graph such that 

1.  , u U∀ ∈ ( ) ( )2 G u rd r ≥=

2.  , v V∀ ∈ ( )1 G vr d− ≤ ≤ r

+then G  and .  ∈ T ( )1 2r G rwτ+ ≤≤

Proof. Since  is a bipartite graph then G ( ) ( ) .G Gχ

Let α  be a proper edge coloring of G  with colors 
2, 3, . 1.r +…  Clearly, ( ) [ ], 2,S u rα = +1  for any u U∈ .    

Define a total coloring β  of the graph  as follows: G
1. for every ( )e E G∈  ( ) ( )e eβ α= , 

2. for every u U∈  , ( ) 1uβ =
3. for every v V∈  

( ) [ ] ( ), 2, 1 \ ,  if ( ) 1,
2, otherwise.

Gs s r S v d v r
v

r
α

β
⎧ ∈ + =⎪
⎨
+⎪⎩

=
−

 

It is easy to check that β  is an interval total coloring of 
the graph G  with no more than  colors, hence 2r + G ∈ T  
and ( ) 2G rwτ ≤ + . On the other hand, clearly 

. ( ) 1G rwτ ≥ +

■ 
Corollary 1. Let  be an regular ( ) bipartite 

graph. Then  G
G r − 2r ≥

∈ T  and . ( )1 2r G rwτ+ ≤≤ +

Corollary 2. Let  be an ( biregular ( ) 

bipartite graph. Then  

G ), 1r r− − 2r ≥

G ∈ T  and . ( ) 1G rwτ = +

Theorem 6. For any  there is an regular bipartite 
graph  such that 

,r s ≥ 3 r −
G ( ) 2V G rs= , G ∈ T  and 

( ) 2G rwτ = + .  
Proof. For the proof of the theorem it suffices to construct a 
necessary graph . Take G s  copies of the complete bipartite 

graph ,r rK  and join their vertices as it shown in the figure 
below:  
 

 
The graph . G

 
Clearly,  is an regular bipartite graph and G r −

( ) 2V G rs= . Now we show that G  has no interval total 
( 1)r + − coloring. Suppose, to the contrary, that α  is an 
interval total ( 1)r + − coloring of . It is easy to see that G α  
induces a total ( 1)r + − coloring of the graph (1)

,r r eK − , 

which contradicts the equality ( )(1)
, 2r rK e rχ − = +′′  ( r ) 

[11]. From this and corollary 1 we have G
3≥

∈ T  and 

( ) 2G rwτ = + .  

■ 
 
Remark. From corollary 1 and theorem 6 we have that 
G ∈ T , ( ) 1G rwτ = +  or  for any ( ) 2G rwτ = +

r − regular bipartite graph . In [8] it was proved that the 
problem of determining whether 

G
( ) 1G rχ = +′′  is 

NP − complete even for cubic bipartite graphs. Therefore we 

can conclude that verification whether ( ) 1G rwτ = +  for an 

r − regular ( ) bipartite graph G  is also 3r ≥
NP − complete.  

 
r= Δ =′  



Theorem 7. Let G  be an ( ),2r − biregular ( ) bipartite 

graph. Then  G  and 
3r ≥

∈ T ( )1 2r G rwτ+ ≤ +≤ . 

Proof. Let  be an G ( ),2r − biregular ( ) bipartite graph 

with bipartition . Consider two cases. 

3r ≥

( ,U V )
Case 1:  is even. r

From the results of [3,4] it follows that G  has an 
interval edge coloring. Let r − α  be this edge coloring. For 
a graph  define an edge coloring G β  as follows: for every 

 ( )e E G∈ ( ) ( ) 1e eβ α= + . 
Define a total coloring γ  of the graph G  as follows: 

1. for every  , ( )e E G∈ ( ) ( )e eγ β=

2. for every u U  ∈ ( ) 1uγ = , 
3. for every  v V∈

( ) ( ) ( )
( )

min , 1, if min , 3

max , 1, otherwise.

S v S v
v

S v

β β

β
γ

⎧ − ≥⎪
⎨

+⎪⎩
=

,
 

It is easy to check that γ  is an interval total 

coloring of the graph G , hence ( )1r+ − G ∈ T  and 
.  ( ) 1G rwτ = +

Case 2:  is odd. r
From the results of [3,4] it follows that G  has an 

interval edge coloring. Let ( )1r+ − α  be this edge coloring. 
For a graph G  define an edge coloring β  as follows: for 

every  ( )e E G∈ ( ) ( ) 1e eβ α= + . 
Define a total coloring γ  of the graph G  as follows: 

1. for every  , ( )e E G∈ ( ) ( )e eγ β=

2. for every u   U∈

( ) ( ) [ ]1, if , 2, 1 ,
2, otherwise.

S u r
u

β
γ

⎧ = +⎪
⎨
⎪⎩

=  

3. for every  v V∈

( ) ( ) ( )
( )

min , 1, if min , 4

max , 1, otherwise.

S v S v
v

S v

β β

β
γ

⎧ − ≥⎪
⎨

+⎪⎩
=

,
 

It is easy to check that γ  is an interval total 

coloring of the graph G , hence G( )2r+ − ∈ T  and 
.  ( ) 2G rwτ ≤ +

■ 
 

For trees P.A. Petrosyan and A.S. Shashikyan proved the 
following: 

 
Theorem 8. [7] If T  is a tree then T ∈T  and 

. ( ) ( ) 2T Twτ ≤ Δ +

 
For complete bipartite graphs P.A. Petrosyan proved the 

following:  
 
Theorem 9. [6] If , 
where 

2 . . .( , ) 1m n g c d m n t m n+ + − ≤ ≤ + +
. . .( , )g c d m n  is the greatest common divisor of  and 

, then  for any .  

m
n ,m n tK ∈T ,m n N∈

 
Finally, we prove that there are bipartite graphs which 

have no interval total coloring.  

Hertz’s graph  ( ) is defined as follows:  ,k lH 4, 3k l≥ ≥

( ),k lV H U V= ∪ , where  

{ } { }1 ,1 ,i
jU a c i k j l≤ ≤ ≤ ≤∪ { }1 2, , , , ,kb b d= …V b  =

( ) ( ){ } ( ){ }, ,  1 ,  1 ,1i
k l i i jE H a b i k b c i k j l= ≤ ≤ ≤ ≤ ≤ ≤∪ ∪  

( ){ },  1 ,1 .i
jc d i k j l≤ ≤ ≤ ≤∪  

Clearly,  is a bipartite graph with ,k lH ( ), .k lH kΔ = l    

Theorem 10. For any , . 7, 3k l≥ ≥ ,k lH ∉T

Proof. We show that  has no interval total t,k lH − coloring, 

where  Suppose, to the contrary, that 1.t kl≥ + α  is an 

interval total t − coloring of . Let ,k lH ( )min , ,S d pα =  

( )( )0
0
,i

jc d pα =  and  ( )max , ,S d qα = ( )( )1
1
,i

jc d qα = . 

Clearly,  It is easy to see that 1.q kl p≥ + −

( )( )0
0 0
, 2i

i jb c pα ≤ + , thus ( )( )0
, 3ia b p lα ≤ + + . This 

implies that  

( )( )1
, 3ia b p k lα ≤ + + +  and ( )( )1

1 1
, 2i

i jb c p k lα ≤ + + + 4,  

hence ( )( )1
1
,i

jq c d p k lα 2 6= ≤ + + + , which is a 

contradiction, since  

( )( )1
1

1 , 2 6i
jkl p q c d p k l kl pα 1,+ − ≤ = ≤ + + + < + −  

for .  7, 3k l≥ ≥

■ 
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	 For   let   denote the set of graphs which have an interval total  coloring, and assume:  . For a graph   the least value of  , for which  , is  denoted by  . 
	 In this paper interval total colorings of bipartite graphs are investigated.  
	 The terms and concepts that we do not define can be found in [10,11]. 
	 
	 
	2. MAIN RESULTS 
	 
	Lemma 1. For any  ,   and  .  
	Proof. Let 
	  and  . 
	Clearly, lemma is true for the case  .  
	Assume that  . 
	Case 1:   or  ,  . 
	Define a total coloring   of the graph   in the following way: 
	1. for   
	  
	2. for   
	  
	Case 2:  ,  . 
	Define a total coloring   of the graph   in the following way: 
	1. for   
	  
	2. for   
	  
	It is easy to see that   is an interval total  coloring of the graph   and, therefore,   and  . 
	■ 
	Lemma 2. For any  ,   and  
	  
	Proof. Let 
	  and  . 
	First of all, we prove that   has an interval total  coloring, if   and   has an interval total  coloring, if  . We distinguish three cases. 
	Case 1:  ,  . 
	Define a total coloring   of the graph   as follows: 
	1. for   
	  
	2. for   
	  
	3.   
	Case 2:  ,   and   is even. 
	Define a total coloring   of the graph   as follows: 
	1. for   
	  
	2. for   
	  
	3.   
	Case 3:  ,   and   is odd. 
	Define a total coloring   of the graph   as follows: 
	1. for   
	  
	2. for   
	  
	3.   
	It is easy to check that   is an interval total  coloring of the graph  , if   and an interval total  coloring of the graph  , if   Hence, for any  ,   and  , if   and  , if   On the other hand, since 
	 [11] 
	then  , if   and  , if   
	■ 
	Every connected component of a graph   with   is a path or a cycle, so from lemma 1 and 2 any component can be intervally colored with no more than   colors. Thus we have 
	  
	Theorem 1. If   is a graph with   then   and  .  
	 
	In [9] A.S. Shashikyan proved the following: 
	 
	Theorem 2. If   is a bipartite graph with   then   and  .  
	Now we consider bipartite graphs with  .  
	Theorem 3. If   is a bipartite graph with   and   has a  factor then   and  .  
	Proof. First of all, note that if   then this theorem follows from theorem 2. 
	Assume that  . 
	Let   denotes the  factor of the graph  . Clearly,  consists of even cycles. The edges of these cycles can be colored alternately by   and  . Consider the subgraph   of the graph  . Clearly,   is a bipartite graph and all its vertices have degree   or  , therefore its components are paths or even cycles. The edges of these paths and cycles we color alternately by   and  . Let   be an obtained edge coloring. 
	Now define a total coloring   of the graph   in the following way: 
	1. for every    
	  
	2. for every    
	  
	3. for every    . 
	It is easy to see that   is an interval total  coloring of the graph   and, therefore,   and  .  
	■ 
	Theorem 4. If   is a bipartite graph with   and no vertex of degree   then   and  .  
	Proof. First of all, note that if   then this theorem follows from theorem 2. 
	Assume that  . 
	From the results of [2] it follows that   has an interval edge  coloring [1]. Let   be this edge coloring. For a graph   define an edge coloring   as follows: for every    . 
	First, we color the vertices of   with   ( ) in the following way: 
	1. for every    
	  
	2. for every    
	  
	Next, we color the vertices of   with   ( ) in the following way: 
	1. for every    
	  
	2. for every    
	  
	Finally, define a total coloring   of the graph   as follows: 
	1. for every    , 
	2. for every  ( )     , 
	3. for every  ( )     . 
	It is not difficult to see that   is an interval total coloring of the graph   with no more than   colors. Thus   and  .  
	■ 
	Theorem 5. Let   be a bipartite graph such that 
	1.    , 
	2.    , 
	then   and  .  
	Proof. Since   is a bipartite graph then   
	Let   be a proper edge coloring of   with colors   Clearly,   for any  .    
	Define a total coloring   of the graph   as follows: 
	1. for every    , 
	2. for every    , 
	3. for every   
	  
	It is easy to check that   is an interval total coloring of the graph   with no more than   colors, hence   and  . On the other hand, clearly  . 
	■ 
	Corollary 1. Let   be an  regular ( ) bipartite graph. Then    and  . 
	Corollary 2. Let   be an  biregular ( ) bipartite graph. Then    and  . 
	Theorem 6. For any   there is an  regular bipartite graph   such that  ,   and  .  
	Proof. For the proof of the theorem it suffices to construct a necessary graph  . Take   copies of the complete bipartite graph   and join their vertices as it shown in the figure below:  
	 
	  
	The graph  . 
	 
	Clearly,   is an  regular bipartite graph and  . Now we show that   has no interval total  coloring. Suppose, to the contrary, that   is an interval total  coloring of  . It is easy to see that   induces a total  coloring of the graph  , which contradicts the equality   ( ) [11]. From this and corollary 1 we have   and  .  
	■ 
	 
	Remark. From corollary 1 and theorem 6 we have that  ,   or   for any  regular bipartite graph  . In [8] it was proved that the problem of determining whether   is  complete even for cubic bipartite graphs. Therefore we can conclude that verification whether   for an  regular ( ) bipartite graph   is also  complete.  
	 
	Theorem 7. Let   be an  biregular ( ) bipartite graph. Then    and  . 
	Proof. Let   be an  biregular ( ) bipartite graph with bipartition  . Consider two cases. 
	Case 1:   is even. 
	From the results of [3,4] it follows that   has an interval edge  coloring. Let   be this edge coloring. For a graph   define an edge coloring   as follows: for every    . 
	Define a total coloring   of the graph   as follows: 
	1. for every    , 
	2. for every    , 
	3. for every   
	  
	It is easy to check that   is an interval total  coloring of the graph  , hence   and  .  
	Case 2:   is odd. 
	From the results of [3,4] it follows that   has an interval edge  coloring. Let   be this edge coloring. For a graph   define an edge coloring   as follows: for every    . 
	Define a total coloring   of the graph   as follows: 
	1. for every    , 
	2. for every    
	  
	3. for every   
	  
	It is easy to check that   is an interval total  coloring of the graph  , hence   and  .  
	■ 
	 
	For trees P.A. Petrosyan and A.S. Shashikyan proved the following: 
	 
	Theorem 8. [7] If   is a tree then   and  . 
	 
	For complete bipartite graphs P.A. Petrosyan proved the following:  
	 
	Theorem 9. [6] If  , where   is the greatest common divisor of   and  , then   for any  .  
	 
	Finally, we prove that there are bipartite graphs which have no interval total coloring.  
	Hertz’s graph   ( ) is defined as follows:  
	 , where  
	    
	  
	  
	Clearly,   is a bipartite graph with     
	Theorem 10. For any  ,  . 
	Proof. We show that   has no interval total  coloring, where   Suppose, to the contrary, that   is an interval total  coloring of  . Let     and    . Clearly,   It is easy to see that  , thus  . This implies that  
	  and   
	hence  , which is a contradiction, since  
	  
	for  .  
	■ 
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