On interval total colorings of bipartite graphs

Petros A. Petrosyan
Institute for Informatics and Automation Problems of NAS of RA,
Department of Informatics and Applied Mathematics, YSU,
Yerevan, Armenia
e-mail: pet_petros@ipia.sci.am

Ani S. Shashikyan
Department of Informatics and Applied Mathematics, YSU, Yerevan, Armenia e-mail: anishashikyan@gmail.com

$v \in V(G)$ together with v are colored by $d_{G}(v)+1$ consecutive colors.

For $t \geq 1$ let \mathcal{I}_{t} denote the set of graphs which have an interval total t-coloring, and assume: $\boldsymbol{\mathcal { Z }} \equiv \bigcup_{t \geq 1} \mathcal{I}_{t}$. For a graph $G \in \boldsymbol{\mathcal { Z }}$ the least value of t, for which $G \in \boldsymbol{\mathcal { I }}_{\mathrm{t}}$, is denoted by $w_{\tau}(G)$.

In this paper interval total colorings of bipartite graphs are investigated.

The terms and concepts that we do not define can be found in $[10,11]$.

2. MAIN RESULTS

Lemma 1. For any $n \geq 2, P_{n} \in \boldsymbol{\mathcal { Z }}$ and $w_{\tau}\left(P_{n}\right)=3$.
Proof. Let

$$
V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } E\left(P_{n}\right)=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\} .
$$

Clearly, lemma is true for the case $n=2$.
Assume that $n \geq 3$.
Case 1: $n=3 k$ or $n=3 k+2, k \in N$.
Define a total coloring α of the graph P_{n} in the following way:

1. for $i=1,2, \ldots, n$

$$
\alpha\left(v_{i}\right)=\left\{\begin{array}{l}
2, \text { if } i \equiv 0(\bmod 3), \\
1, \text { if } i \equiv 1(\bmod 3), \\
3, \text { if } i \equiv 2(\bmod 3),
\end{array}\right.
$$

2. for $j=1,2, \ldots, n-1$

$$
\alpha\left(\left(v_{j}, v_{j+1}\right)\right)=\left\{\begin{array}{l}
3, \text { if } j \equiv 0(\bmod 3) \\
2, \text { if } j \equiv 1(\bmod 3) \\
1, \text { if } j \equiv 2(\bmod 3)
\end{array}\right.
$$

Case 2: $n=3 k+1, k \in N$.
Define a total coloring α of the graph P_{n} in the following way:

1. for $i=1,2, \ldots, n$

$$
\alpha\left(v_{i}\right)=\left\{\begin{array}{l}
3, \text { if } i \equiv 0(\bmod 3) \\
2, \text { if } i \equiv 1(\bmod 3) \\
1, \text { if } i \equiv 2(\bmod 3)
\end{array}\right.
$$

2. for $j=1,2, \ldots, n-1$

$$
\alpha\left(\left(v_{j}, v_{j+1}\right)\right)=\left\{\begin{array}{l}
1, \text { if } j \equiv 0(\bmod 3) \\
3, \text { if } j \equiv 1(\bmod 3) \\
2, \text { if } j \equiv 2(\bmod 3)
\end{array}\right.
$$

It is easy to see that α is an interval total $3-$ coloring of the graph P_{n} and, therefore, $P_{n} \in \mathfrak{Z}$ and $w_{\tau}\left(P_{n}\right)=3$.

Lemma 2. For any $n \geq 3, C_{n} \in \boldsymbol{I}$ and

$$
w_{\tau}\left(C_{n}\right)=\left\{\begin{array}{l}
3, \text { if } n=3 k, k \in N, \\
4, \text { otherwise }
\end{array}\right.
$$

Proof. Let

$$
\begin{gathered}
V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } \\
E\left(C_{n}\right)=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{1}, v_{n}\right)\right\} .
\end{gathered}
$$

First of all, we prove that C_{n} has an interval total 3 - coloring, if $n=3 k, k \in N$, and C_{n} has an interval total 4 - coloring, if $n \neq 3 k, k \in N$. We distinguish three cases. Case 1: $n=3 k, k \in N$.

Define a total coloring α of the graph C_{n} as follows:

1. for $i=1,2, \ldots, n$

$$
\alpha\left(v_{i}\right)=\left\{\begin{array}{l}
2, \text { if } i \equiv 0(\bmod 3), \\
1, \text { if } i \equiv 1(\bmod 3), \\
3, \text { if } i \equiv 2(\bmod 3),
\end{array}\right.
$$

2. for $j=1,2, \ldots, n-1$

$$
\alpha\left(\left(v_{j}, v_{j+1}\right)\right)=\left\{\begin{array}{l}
3, \text { if } j \equiv 0(\bmod 3), \\
2, \text { if } j \equiv 1(\bmod 3), \\
1, \text { if } j \equiv 2(\bmod 3),
\end{array}\right.
$$

3. $\alpha\left(\left(v_{1}, v_{n}\right)\right)=3$.

Case 2: $n \neq 3 k, k \in N$ and n is even.
Define a total coloring α of the graph C_{n} as follows:

1. for $i=1,2, \ldots, n$

$$
\alpha\left(v_{i}\right)=\left\{\begin{array}{l}
4, \text { if } i \equiv 0(\bmod 2), \\
1, \text { if } i \equiv 1(\bmod 2),
\end{array}\right.
$$

2. for $j=1,2, \ldots, n-1$

$$
\alpha\left(\left(v_{j}, v_{j+1}\right)\right)=\left\{\begin{array}{l}
2, \text { if } j \equiv 0(\bmod 2), \\
3, \text { if } j \equiv 1(\bmod 2),
\end{array}\right.
$$

3. $\alpha\left(\left(v_{1}, v_{n}\right)\right)=2$.

Case 3: $n \neq 3 k, k \in N$ and n is odd.
Define a total coloring α of the graph C_{n} as follows:

1. for $i=1,2, \ldots, n$

$$
\alpha\left(v_{i}\right)=\left\{\begin{array}{l}
4, \text { if } i \equiv 0(\bmod 2), i \neq n-1, \\
1, \text { if } i \equiv 1(\bmod 2), i \neq n, \\
2, \text { if } i=n-1, \\
3, \text { if } i=n,
\end{array}\right.
$$

2. for $j=1,2, \ldots, n-1$

$$
\alpha\left(\left(v_{j}, v_{j+1}\right)\right)=\left\{\begin{array}{l}
2, \text { if } j \equiv 0(\bmod 2), j \neq n-1, \\
3, \text { if } j \equiv 1(\bmod 2), \\
4, \text { if } j=n-1,
\end{array}\right.
$$

3. $\alpha\left(\left(v_{1}, v_{n}\right)\right)=2$.

It is easy to check that α is an interval total 3 - coloring of the graph C_{n}, if $n=3 k, k \in N$, and an interval total 4 -coloring of the graph C_{n}, if $n \neq 3 k, k \in N$. Hence, for any $n \geq 3, C_{n} \in \mathbb{Z}$ and $w_{\tau}\left(C_{n}\right) \leq 3$, if $n=3 k, k \in N$, and $w_{\tau}\left(C_{n}\right) \leq 4$, if $n \neq 3 k, k \in N$. On the other hand, since

$$
w_{\tau}\left(C_{n}\right) \geq \chi^{\prime \prime}\left(C_{n}\right)=\left\{\begin{array}{l}
3, \text { if } n=3 k, k \in N, \\
4, \text { otherwise },
\end{array}\right.
$$

then $w_{\tau}\left(C_{n}\right) \geq 3$, if $n=3 k, k \in N$, and $w_{\tau}\left(C_{n}\right) \geq 4$, if $n \neq 3 k, k \in N$.

Every connected component of a graph G with $\Delta(G) \leq 2$ is a path or a cycle, so from lemma 1 and 2 any component can be intervally colored with no more than 4 colors. Thus we have

Theorem 1. If G is a graph with $\Delta(G) \leq 2$ then $G \in \boldsymbol{\mathcal { Z }}$ and $w_{\tau}(G) \leq 4$.

In [9] A.S. Shashikyan proved the following:
Theorem 2. If G is a bipartite graph with $\Delta(G) \leq 3$ then $G \in \boldsymbol{\mathcal { I }}$ and $w_{\tau}(G) \leq 5$.

Now we consider bipartite graphs with $\Delta(G) \leq 4$.
Theorem 3. If $G=(U, V, E)$ is a bipartite graph with $\Delta(G) \leq 4$ and G has a 2 -factor then $G \in \mathbb{\Sigma}$ and $w_{\tau}(G) \leq 6$.
Proof. First of all, note that if $\Delta(G) \leq 3$ then this theorem follows from theorem 2.

Assume that $\Delta(G)=4$.
Let F denotes the 2 - factor of the graph G. Clearly, F consists of even cycles. The edges of these cycles can be colored alternately by 2 and 3 . Consider the subgraph $G \backslash F$ of the graph G. Clearly, $G \backslash F$ is a bipartite graph and all its vertices have degree 1 or 2 , therefore its components are paths or even cycles. The edges of these paths and cycles we color alternately by 1 and 4 . Let α be an obtained edge coloring.

Now define a total coloring β of the graph G in the following way:

1. for every $u \in U$

$$
\begin{aligned}
& \beta(u)=\left\{\begin{array}{l}
1, \text { if } S(u, \alpha)=[1,4] \text { or } S(u, \alpha)=[1,3] \text { or } S(u, \alpha)=[1,2], \\
2, \text { if } S(u, \alpha)=[2,4] \text { or } S(u, \alpha)=[2,3], \\
3, \text { if } S(u, \alpha)=[3,4],
\end{array}\right. \\
& \text { 2. for every } v \in V
\end{aligned}
$$

$$
\beta(v)=\left\{\begin{array}{l}
4, \text { if } S(v, \alpha)=[1,2], \\
5, \text { if } S(v, \alpha)=[1,3] \text { or } S(v, \alpha)=[2,3] \\
6, \text { if } S(v, \alpha)=[1,4] \text { or } S(v, \alpha)=[2,4] \text { or } S(v, \alpha)=[3,4]
\end{array}\right.
$$

3. for every $e \in E(G) \quad \beta(e)=\alpha(e)+1$.

It is easy to see that β is an interval total 6 - coloring of the graph G and, therefore, $G \in \boldsymbol{Z}$ and $w_{\tau}(G) \leq 6$.

Theorem 4. If $G=(U, V, E)$ is a bipartite graph with $\Delta(G) \leq 4$ and no vertex of degree 3 then $G \in \boldsymbol{\mathcal { I }}$ and $w_{\tau}(G) \leq 6$.
Proof. First of all, note that if $\Delta(G) \leq 3$ then this theorem follows from theorem 2.

Assume that $\Delta(G)=4$.
From the results of [2] it follows that G has an interval edge 4 -coloring [1]. Let α be this edge coloring. For a graph G define an edge coloring β as follows: for every $e \in E(G) \quad \beta(e)=\alpha(e)+1$.

First, we color the vertices of G with $d_{G}(w) \geq 2$ ($w \in V(G)$) in the following way:

1. for every $u \in U$

$$
\gamma(u)=\left\{\begin{array}{l}
1, \text { if } d_{G}(u)=4 \text { or } S(u, \beta)=[2,3], \\
2, \text { if } S(u, \beta)=[3,4], \\
3, \text { if } S(u, \beta)=[4,5],
\end{array}\right.
$$

2. for every $v \in V$

$$
\gamma(v)=\left\{\begin{array}{l}
4, \text { if } S(v, \beta)=[2,3] \\
5, \text { if } S(v, \beta)=[3,4] \\
6, \text { if } d_{G}(v)=4 \text { or } S(v, \beta)=[4,5]
\end{array}\right.
$$

Next, we color the vertices of G with $d_{G}(w) \leq 1$ ($w \in V(G)$) in the following way:

1. for every $u \in U$

$$
\varphi(u)=\left\{\begin{array}{l}
1, \text { if } d_{G}(u)=0, \\
s, s \in\{\beta((u, v))-1, \beta((u, v))+1\} \backslash \gamma(v), \\
\quad \text { if } d_{G}(u)=1,(u, v) \in E(G), \text { where } d_{G}(v) \geq 2, \\
\beta((u, v))-1, \text { if } d_{G}(u)=d_{G}(v)=1 \text { and }(u, v) \in E(G),
\end{array}\right.
$$

2. for every $v \in V$

$$
\varphi(v)=\left\{\begin{array}{l}
4, \text { if } d_{G}(v)=0, \\
t, t \in\{\beta((u, v))-1, \beta((u, v))+1\} \backslash \gamma(u), \\
\quad \text { if } d_{G}(v)=1,(u, v) \in E(G), \text { where } d_{G}(u) \geq 2 \\
\beta((u, v))+1, \text { if } d_{G}(u)=d_{G}(v)=1 \text { and }(u, v) \in E(G)
\end{array}\right.
$$

Finally, define a total coloring ψ of the graph G as follows:

1. for every $e \in E(G) \quad \psi(e)=\varphi(e)$,
2. for every $w \in V(G)\left(d_{G}(w) \geq 2\right) \quad \psi(w)=\gamma(w)$,
3. for every $w \in V(G)\left(d_{G}(w) \leq 1\right) \quad \psi(w)=\varphi(w)$.

It is not difficult to see that ψ is an interval total coloring of the graph G with no more than 6 colors. Thus $G \in \boldsymbol{Z}$ and $w_{\tau}(G) \leq 6$.

Theorem 5. Let $G=(U, V, E)$ be a bipartite graph such that

1. $\forall u \in U \quad d_{G}(u)=r(r \geq 2)$,
2. $\forall v \in V \quad r-1 \leq d_{G}(v) \leq r$,
then $G \in \boldsymbol{\mathcal { Z }}$ and $r+1 \leq w_{\tau}(G) \leq r+2$.
Proof. Since G is a bipartite graph then $\chi^{\prime}(G)=\Delta(G)=r$.

Let α be a proper edge coloring of G with colors $2,3, \ldots r+1$. Clearly, $S(u, \alpha)=[2, r+1]$ for any $u \in U$.

Define a total coloring β of the graph G as follows:

1. for every $e \in E(G) \quad \beta(e)=\alpha(e)$,
2. for every $u \in U \quad \beta(u)=1$,
3. for every $v \in V$

$$
\beta(v)=\left\{\begin{array}{l}
s, s \in[2, r+1] \backslash S(v, \alpha) \text { if } d_{G}(v)=r-1, \\
r+2, \text { otherwise } .
\end{array}\right.
$$

It is easy to check that β is an interval total coloring of the graph G with no more than $r+2$ colors, hence $G \in \boldsymbol{I}$ and $w_{\tau}(G) \leq r+2$. On the other hand, clearly $w_{\tau}(G) \geq r+1$.

Corollary 1. Let G be an r-regular ($r \geq 2$) bipartite graph. Then $G \in \boldsymbol{Z}$ and $r+1 \leq w_{\tau}(G) \leq r+2$.
Corollary 2. Let G be an $(r, r-1)$-biregular $(r \geq 2)$ bipartite graph. Then $G \in \boldsymbol{\Sigma}$ and $w_{\tau}(G)=r+1$.
Theorem 6. For any $r, s \geq 3$ there is an r-regular bipartite graph G such that $|V(G)|=2 r s, \quad G \in \mathbb{\Xi}$ and $w_{\tau}(G)=r+2$.
Proof. For the proof of the theorem it suffices to construct a necessary graph G. Take s copies of the complete bipartite graph $K_{r, r}$ and join their vertices as it shown in the figure below:

The graph G.
Clearly, G is an r-regular bipartite graph and $|V(G)|=2 r s$. Now we show that G has no interval total $(r+1)-$ coloring. Suppose, to the contrary, that α is an interval total $(r+1)-$ coloring of G. It is easy to see that α induces a total $(r+1)$-coloring of the graph $K_{r, r}^{(1)}-e$, which contradicts the equality $\chi^{\prime \prime}\left(K_{r, r}^{(1)}-e\right)=r+2 \quad(r \geq 3)$ [11]. From this and corollary 1 we have $G \in \boldsymbol{\Xi}$ and $w_{\tau}(G)=r+2$.

Remark. From corollary 1 and theorem 6 we have that $G \in \mathfrak{Z}, \quad w_{\tau}(G)=r+1 \quad$ or $\quad w_{\tau}(G)=r+2 \quad$ for \quad any r-regular bipartite graph G. In [8] it was proved that the problem of determining whether $\quad \chi^{\prime \prime}(G)=r+1 \quad$ is $N P$ - complete even for cubic bipartite graphs. Therefore we can conclude that verification whether $w_{\tau}(G)=r+1$ for an r-regular $\quad(r \geq 3)$ bipartite graph G is also $N P$ - complete.

Theorem 7. Let G be an $(r, 2)$ - biregular $(r \geq 3)$ bipartite graph. Then $G \in \boldsymbol{\mathcal { Z }}$ and $r+1 \leq w_{\tau}(G) \leq r+2$.
Proof. Let G be an $(r, 2)$ - biregular $(r \geq 3)$ bipartite graph with bipartition (U, V). Consider two cases.
Case 1: r is even.
From the results of $[3,4]$ it follows that G has an interval edge r-coloring. Let α be this edge coloring. For a graph G define an edge coloring β as follows: for every $e \in E(G) \quad \beta(e)=\alpha(e)+1$.

Define a total coloring γ of the graph G as follows:

1. for every $e \in E(G) \quad \gamma(e)=\beta(e)$,
2. for every $u \in U \quad \gamma(u)=1$,
3. for every $v \in V$

$$
\gamma(v)=\left\{\begin{array}{l}
\min S(v, \beta)-1, \text { if } \min S(v, \beta) \geq 3, \\
\max S(v, \beta)+1, \text { otherwise }
\end{array}\right.
$$

It is easy to check that γ is an interval total $(r+1)$-coloring of the graph G, hence $G \in \boldsymbol{I}$ and $w_{\tau}(G)=r+1$.
Case 2: r is odd.
From the results of [3,4] it follows that G has an interval edge $(r+1)$ - coloring. Let α be this edge coloring. For a graph G define an edge coloring β as follows: for every $e \in E(G) \quad \beta(e)=\alpha(e)+1$.

Define a total coloring γ of the graph G as follows:

1. for every $e \in E(G) \quad \gamma(e)=\beta(e)$,
2. for every $u \in U$

$$
\gamma(u)=\left\{\begin{array}{l}
1, \text { if } S(u, \beta)=[2, r+1] \\
2, \text { otherwise }
\end{array}\right.
$$

3. for every $v \in V$

$$
\gamma(v)=\left\{\begin{array}{l}
\min S(v, \beta)-1, \text { if } \min S(v, \beta) \geq 4 \\
\max S(v, \beta)+1, \text { otherwise }
\end{array}\right.
$$

It is easy to check that γ is an interval total $(r+2)$ - coloring of the graph G, hence $G \in \boldsymbol{Z}$ and $w_{\tau}(G) \leq r+2$.

For trees P.A. Petrosyan and A.S. Shashikyan proved the following:

Theorem 8. [7] If T is a tree then $T \in \boldsymbol{Z}$ and $w_{\tau}(T) \leq \Delta(T)+2$.

For complete bipartite graphs P.A. Petrosyan proved the following:

Theorem 9. [6] If $m+n+2-$ g.c.d. $(m, n) \leq t \leq m+n+1$, where g.c.d. (m, n) is the greatest common divisor of m and n, then $K_{m, n} \in \mathfrak{\Xi}_{t}$ for any $m, n \in N$.

Finally, we prove that there are bipartite graphs which have no interval total coloring.

Hertz's graph $H_{k, l}(k \geq 4, l \geq 3)$ is defined as follows:

$$
\begin{gathered}
V\left(H_{k, l}\right)=U \cup V, \text { where } \\
U=\{a\} \cup\left\{c_{j}^{i} \mid 1 \leq i \leq k, 1 \leq j \leq l\right\}, V=\left\{b_{1}, b_{2}, \ldots, b_{k}, d\right\}, \\
E\left(H_{k, l}\right)=\left\{\left(a, b_{i}\right) \mid 1 \leq i \leq k\right\} \cup\left\{\left(b_{i}, c_{j}^{i}\right) \mid 1 \leq i \leq k, 1 \leq j \leq l\right\} \cup \\
\cup\left\{\left(c_{j}^{i}, d\right) \mid 1 \leq i \leq k, 1 \leq j \leq l\right\} .
\end{gathered}
$$

Clearly, $H_{k, l}$ is a bipartite graph with $\Delta\left(H_{k, l}\right)=k l$.
Theorem 10. For any $k \geq 7, l \geq 3, H_{k, l} \notin \mathbf{Z}$.
Proof. We show that $H_{k, l}$ has no interval total t-coloring, where $t \geq k l+1$. Suppose, to the contrary, that α is an interval total t-coloring of $H_{k, l}$. Let $\min S(d, \alpha)=p$, $\alpha\left(\left(c_{j_{0}}^{i_{0}}, d\right)\right)=p \quad$ and $\quad \max S(d, \alpha)=q, \quad \alpha\left(\left(c_{j_{1}}^{i_{1}}, d\right)\right)=q$. Clearly, $\quad q \geq k l+p-1$. It is easy to see that $\alpha\left(\left(b_{i_{0}}, c_{j_{0}}\right)\right) \leq p+2$, thus $\alpha\left(\left(a, b_{i_{0}}\right)\right) \leq p+l+3$. This implies that
$\alpha\left(\left(a, b_{i_{1}}\right)\right) \leq p+k+l+3$ and $\alpha\left(\left(b_{i_{1}}, c_{j_{1}}^{i_{1}}\right)\right) \leq p+k+2 l+4$, hence $\quad q=\alpha\left(\left(c_{j_{1}}, d\right)\right) \leq p+k+2 l+6$, which is a contradiction, since

$$
k l+p-1 \leq q=\alpha\left(\left(c_{j_{1}}^{i_{1}}, d\right)\right) \leq p+k+2 l+6<k l+p-1
$$

for $k \geq 7, l \geq 3$.

REFERENCES

[1] A.S. Asratian, R.R. Kamalian, "Interval colorings of edges of a multigraph", Appl. Math. 5, pp. 25-34, 1987.
[2] K. Giaro, The complexity of consecutive Δ - coloring of bipartite graphs: 4 is easy, 5 is hard, Ars Combin. 47, pp. 287298, 1997.
[3] D. Hanson, C.O.M. Loten, B. Toft, "On interval colorings of bi-regular bipartite graphs", Ars Combin. 50, pp. 23-32, 1998.
[4] R.R.Kamalian, A.N.Mirumian, "Interval edge colorings of bipartite graphs of some class", Dokl. NAN RA, 97, pp. 3-5, 1997.
[5] P.A. Petrosyan, "Interval total colorings of complete bipartite graphs", Proceedings of the CSIT Conference, pp. 84-85, 2007.
[6] P.A. Petrosyan, "Interval total colorings of certain graphs", Mathematical Problems of Computer Science, Vol. 31, pp. 122-129, 2008.
[7] P.A. Petrosyan, A.S. Shashikyan, "On interval total colorings of trees", Mathematical Problems of Computer Science, Vol. 32, pp. 70-73, 2009.
[8] A. Sanchez-Arroyo, Determining the total colouring number is $N P$ - hard, Discrete Mathematics 78, pp. 315-319, 1989.
[9] A.S. Shashikyan, "On interval total colorings of bipartite graphs", Master's Thesis, Yerevan State University, 2009, 29p.
[10] D.B. West, "Introduction to Graph Theory", PrenticeHall, New Jersey, 2001.
[11] H.P. Yap, "Total Colorings of Graphs", Lecture Notes in Mathematics 1623, Springer-Verlag, 1996.

