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Abstract—Let G be an Abelian group of order n, let k ⩾ 2
be an integer, and A1, . . . , Ak be non-empty subsets of G.
The collection (A1, . . . , Ak) is called k-sum-free (abbreviated
k-SFC), if the equation x1 + · · ·+xk = 0 has no solutions in the
collection (A1, . . . , Ak), where x1 ∈ A1, . . . , xk ∈ Ak. The family
of k-SFC in G will be denoted by SFCk(G). The collection
(A1, . . . , Ak) ∈ SFCk(G) is called maximal by capacity if
it is maximal by the sum of |Ai| + · · · + |Ak|, and maximal
by inclusion if for any i ∈ {1, . . . , k} and x ∈ G \ Ai, the
collection (A1, . . . , Ai−1, Ai ∪ {x}, Ai+1, . . . , Ak) /∈ SFCk(G).
Suppose ϱk(G) = |Ai| + · · · + |Ak|. In this work, we study
the problem of the maximal value of ϱk(G). In particular, the
maximal value of ϱk(Zd) for the cyclic group Zd is determined.
Upper and lower bounds for ϱk(G) are obtained for the
Abelian group G. The structure of maximal k-sum-free set by
capacity (by inclusion) is described for an arbitrary cyclic group.

Keywords— Collection, sum-free, cyclic group, non-trivial sub-
group, canonical homomorphism, coset.

I. INTRODUCTION

Let G be an Abelian group of order n, let k ⩾ 2 be
an integer, and A1, . . . , Ak be non-empty subsets of G. The
collection (A1, . . . , Ak)) is called a k-sum-free (abbreviated
k-SFC) if there is no such a collection as

(a1, . . . , ak) ∈ A1 × · · · ×Ak,

being the solution of the equation

x1 + · · ·+ xk = 0. (1)

The family of k-SFC in G will be denoted by SFCk(G).
Suppose

ϱk(G) = max
(A1,...,Ak)∈SFCk(G)

|A1|+ · · ·+ |Ak|.

Let (A1, . . . , Ak) be a k-sum-free collection in the group G.
The collection (A1, . . . , Ak) is called maximal by capacity if
it is maximal by ϱk(G), and maximal by inclusion if for any
i ∈ {1, . . . , k} and x ∈ G \Ai, the collection

(A1, . . . , Ai−1, Ai ∪ {x}, Ai+1, . . . , Ak)

is not k-sum-free in the group G.
In this article, the following issues are considered.

Problem 1. Definition of ϱk(G).
Problem 2. The structure definition of maximal k-SFC by
capacity (by inclusion).

II. DEFINITION AND AUXILIARY STATEMENTS

Let A1, ..., Ak be non-empty subsets of the group G.
Suppose

A1 + · · ·+Ak = {x1 + · · ·+ xk | x1 ∈ A1, . . . , xk ∈ Ak}.

If (A1, . . . , Ak) ∈ SFCk(G), then this is equivalent to the
fact that 0 /∈ A1 + · · ·+Ak.

Let G be an Abelian group and let H be a subgroup of G.
Then, through ϕG,G/H the ultimate canonical homomorphism
ϕG,G/H : G → G/H, and for any subset A of the group G,
we denote by A/H the subset ϕG,G/H(A) of the group factor
G/H.

Lemma 1: Let H be a subgroup of the Abelian
group G. If (A1, . . . , Ak) ∈ SFCk(G/H), then
(ϕ−1

G,G/H(A1), . . . , ϕ
−1
G,G/H(Ak)) ∈ SFCk(G). Moreover, if

(ϕ−1
G,G/H(A1), . . . , ϕ

−1
G,G/H(Ak)) is a maximal (by inclusion)

k-sum-free collection in the group G, then ((A1, . . . , Ak) is
a maximal (by inclusion) k-sum-free collection in the group
factor G/H.

Definition 1: Let A be a non-empty subset of the group G.
The largest subgroup H(A) of the group G such that A +
H(A) = A, is called a stabilizer of the set A.

Let G be an Abelian group, let k ⩾ 2 be an integer, and
A1, . . . , Ak be non-empty subsets of G. Here HG = HG(A1+
· · ·+Ak) denotes the stabilizer of the set A1 + · · ·+Ak

A1 + · · ·+Ak +HG = A1 + · · ·+Ak. (2)

Lemma 2: If (A1, . . . , Ak) is a maximal k-sum-free col-
lection by inclusion in the group G, then the set (A1 +
HG, . . . , Ak + HG) is also a maximal k-sum-free set by
inclusion in the group G.

Lemma 3: If (A1, . . . , Ak) is a maximal k-sum-free collec-
tion by inclusion in the group G, then for any i ∈ {1, . . . , k}
the collection (A1, . . . , Ai−1, Ai +HG, Ai+1, . . . , Ak) is also
a maximal k-sum-free collection by inclusion in the group G.

Lemma 4: If (A1, . . . , Ak) is a maximal k-sum-free collec-
tion by inclusion in the group G, then Ai = Ai + HG, and
hence, Ai represents a combination of several adjacent classes
of the subgroup HG, which in turn means that |Ai| is divided
into |HG|, for all i = 1, . . . , k.
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Lemma 5: If (A1, . . . , Ak) is a maximal k-sum-free
collection by inclusion in the group G, then the set
(A1/HG, . . . , Ak/HG) is also a maximal k-sum-free collec-
tion by inclusion in the group G/HG.

Lemma 6: Let G be an Abelian group, let (A1, . . . , Ak)
be a maximal k-sum-free collection by inclusion in the group
G, and HG be a stabilizer of the set A1 + · · · + Ak, and
HG/HG

be a stabilizer of the set A1/HG + · · · + Ak/HG.
Then HG/HG

= HG/HG = {0} ∈ G/HG.
Lemma 7: If (A1, . . . , Ak) is a k-sum-free collection in

the Abelian group G, then for any 2 ⩽ m ⩽ k − 1
(A1, . . . , Am−1, Am+· · ·+Ak) it is an m-sum-free collection
in the Abelian group G.

III. DEFINITION OF ϱk(G)

In 1813, Cauchy [1] proved the first result of a theory called
Additive number theory. The Additive number theory is the
main tool for studying Problem 1 and Problem 2. Cauchy’s
result, which Davenport [2], [3] revised in 1935, is called the
Cauchy–Davenport theorem. Applying this theorem we get the
exact value ϱk(Zp) for a cyclic group of a simple order.

Theorem 1: For any prime number p the following equality
is true

ϱk(Zp) = p+ k − 2.

In 1953, Kneser [4], [5] generalized Cauchy–Davenport’s
result for any Abelian group. Applying Kneser’s theorem we
obtain lower and upper bounds for any Abelian groups.

Theorem 2: Let G be an Abelian group of order n and
exponent ν. Then

n+
n

p1
(k − 2) = max

d|ν

(n
d
(d+ k − 2)

)
⩽

⩽ ϱk(G) ⩽

⩽ max
d|n

(n
d
(d+ k − 2)

)
= n+

n

p2
(k − 2),

where p1 is the smallest prime divisor of ν, and p2 is the
smallest prime divisor of n.

There exist premises to imply that the following statement
is true.

Theorem 3 (Hypothesis): Let G be an Abelian group of
order n and exponent ν. Then

ϱk(G) = n+
n

p
(k − 2),

where p is the smallest prime divisor of ν.
Theorem 4: For any n, the following equality is true:

ϱk(Zn) = n+
n

p

(
k − 2

)
,

where p is the smallest prime divisor of n.
Theorem 5: Let G be an Abelian group of order n and

exponent ν. Then

ϱk(G) ≥ max
d|ν

(n
d
ϱk(Zd)

)
.

IV. ON THE STRUCTURE OF A MAXIMAL BY CAPACITY
k-SUM-FREE COLLECTION IN A CYCLIC GROUP

Let A be a subset of the Abelian group G, then denote
by A as a complement of the subset A in the Abelian group
G, that is, A = G \A, and for any natural number m denote
m⋆A = {ma | a ∈ A} andm⋆A will be called an extension
of the set A. Let’s define ord(A) = {ord(a) | a ∈ A}, where
ord(a) is the order of the element a.

Lemma 8: Let (A1, . . . , Ak) be a k-sum-free collection in
the Abelian group G. Then for any m /∈ ord(A1+· · ·+Ak) the
collection (m⋆A1, . . . ,m ⋆ Ak) is k-sum-free in the Abelian
group G.

Remark 1: Note that for any A ⊆ Zp, where p is a prime
number, ord(A) = {p}.

Definition 2: The arithmetic progression of P in the Abelian
group G is such an entity that there exist two elements a, d ∈
G, and a non-negative integer s, such that

P = {a+ jd | 1 ⩽ j ⩽ s}.

In 1956, Vosper [6], [7] considered the Cauchy–Davenport
result in the case of equality. Vosper’s theorem will mainly
help in the study of Problem 2.

As a result, we got the following result:
Lemma 9: Let (A1, . . . , Ak) be a k-sum-free collection in

the cyclic group of the prime order Zp such that the difference
of all arithmetic progressions in {A1, . . . , Ak} is equal to d.
Let dm(mod p) = 1. Then (m ⋆ A1, . . . ,m ⋆ Ak) is a k-
sum-free collection in Zp, and the difference of all arithmetic
progressions in {m ⋆ A1, . . . ,m ⋆ Ak} is equal to 1.

Lemma 10: If (A1, . . . , Ak) is a maximal k-sum-free col-
lection by capacity in the cyclic group of prime order Zp, then
for any 2 ⩽ m ⩽ k− 1 (A1, . . . , Am−1, Am + · · ·+Ak) it is
a maximal m-sum-free collection by capacity in Zp.

Theorem 6: Let k ⩾ 2, and A1, . . . , Ak be non-empty
subsets of the cyclic group Zp of the prime order p, such
that A1+ · · ·+Ak ̸= Zp. Then |A1+ · · ·+Ak| = |A1|+ · · ·+
|Ak|−(k−1), if and only if for each set Ak−i, i = 0, . . . , k−1,
there occurs at least one of the following three conditions:

(i) min(|A1 + · · ·+Ak−i−1|, |Ak−i|) = 1;
(ii) if |A1 + · · · + Ak−i| = p − 1, then

Ak−i = c− (A1 + · · ·+Ak−i−1), where
{c} = (A1 + · · ·+Ak−i);

(iii) A1+ · · ·+Ak−i−1, Ak−i are arithmetic progressions
with the same difference.

Remark 2: Since the permutation keeps the collection sum-
free, that is, if the collection (A1, . . . , Ak) is k-sum-free
then the collection (Ai1 , . . . , Aik) is also k-sum-free where
(i1, . . . , ik) is an arbitrary permutation of the set (1, . . . , k),
then the sequence of choice of sets can be arbitrary.

Remark 3: All arithmetic progressions in (A1, . . . , Ak) have
the same difference.

The next theorem describes the structure of each maximal
k-sum-free collection by capacity (with accuracy up to iso-
morphism) in the cyclic group of prime order.
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Theorem 7: Let k ⩾ 2, let Zp be a cyclic group of prime
order, and let A1, . . . , Ak be a maximal k-sum-free collection
by capacity in Zp. Then, each entity of the set with accuracy
up to isomorphism is one of the following:

(i) |Ai| = 1;
(ii) Ai = −(A1 + · · ·+Ai−1 +Ai+1 + · · ·+Ak);
(iii) Ai is an arithmetic progression with difference 1;

where i = 1, . . . , k.
Theorem 8: Let k ⩾ 2, and p be the smallest prime divisor

of a natural number n, and H be a subgroup of the group
Zn of order n/p, and (A1, . . . , Ak) be a maximal k-sum-free
collection by capacity in Zn. Then, each entity of this set,
with accuracy up to isomorphism, is one of the following:

(i) |Ai| = n/p, that is, Ai is the coset of Zn by the
subgroup H;

(ii) Ai is a union of cosets Zn by the sub-
group H such that for sets of representatives
of cosets as subsets of the cyclic group Zp,
the following relation is correct: Ai/H =
−(A1/H + ..+Ai−1/H +Ai+1/H + ..+Ak/H);

(iii) Ai is a union of cosets Zn by the subgroup H such
that the set of representatives of cosets as a subset
of the cyclic group Zp, is an arithmetic progression
with difference 1;

where i = 1, . . . , k.
It is well known that any finite Abelian group is isomorphic

to some group of the form

Z/a1Z × · · · × Z/asZ,

where 2 ⩽ as|as−1| . . . |a2|a1 (see in [8]).
The following result is on one construction of the maximal

by inclusion k-sum-free collection in a cyclic group.
Lemma 11: If in an Abelian group G there exists a maximal

by inclusion k-sum-free collection with the capacity of k, then
the group G is cyclic.
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