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Abstract—Multi-party computation provides a compelling 
paradigm for secure and privacy-preserving collaboration 
among distributed entities in ad-hoc networks, and has a 
growing role in self-organizing systems that autonomously 
configure and coordinate their components without centralized 
control. Multi-party computation approaches evolving to meet 
the architectural and functional demands of self-organizing 
systems and swarms include techniques such as threshold secret 
sharing, homomorphic encryption, garbled circuits for pairwise 
computations, decentralized learning, blockchain, and 
asynchronous computations designed for dynamically changing 
topologies. Resilient coordination in self-organizing swarms also 
suggests embedding mechanisms that enable a decentralized 
network of highly collaborative peers coordinating actions or 
decisions, even when some nodes fail, misbehave, or set 
maliciously. Asynchronous setting of swarms allows messages 
between peers to be delayed, lost, or arrive out of order. Absence 
of the global clock and possibility for peers to join or leave the 
network at any time render these networks dynamic and 
decentralized without a stable infrastructure or fixed routing. 
The paper introduces premises for secure asynchronous multi-
party computation, also presents a model to ensure explainability 
and intelligent control of the decisions made during the swarm 
mission. 

Keywords—Multi-party computation, self-organization, 
asynchronous setting, explainability. 

I. INTRODUCTION  
In many emerging applications ranging from UAV 

swarms and mobile sensor networks to ad-hoc cyber-physical 
systems, distributed peers must make collaborative decisions 
in real-time without relying on central control or synchronized 
communication. These environments are inherently dynamic, 
privacy-sensitive, and pose significant challenges when 
embedding traditional decision-making models. While multi-
party computation (MPC) provides a foundation for privacy-
preserving collaboration, its classical forms assume 
synchronous interaction and lack transparency in how 
decisions are derived. This black-box nature undermines trust, 
especially when systems must justify their behavior or adapt 
to contextual shifts. To address these issues, we propose an 
asynchronous multi-party computation framework that 
integrates explainability and intelligent control. Our approach 
enables peers to jointly compute decisions in a delay-tolerant 

and privacy-preserving manner, while also understanding the 
reasoning behind outcomes and autonomously adjusting their 
behavior based on local context and observed network 
dynamics. This represents a critical step toward building 
accountable, resilient, and self-organizing intelligent systems 
for next-generation ad-hoc environments. 

Peers in the UAV swarms act as self-organizing agents 
with the capability to reason, draw inferences and 
conclusions, and act based on available evidence. The 
foundations for building intelligent swarm agents are 
presented in a series of our publications [1-5]. These include 
construction of cognitive peers, algorithms for comprehensive 
information exchange, cloud-based models for self-
organization, the development of a multi-user UAV swarm 
simulation platform, and a tamper-proof solution designed to 
prevent unauthorized access, interference, or manipulation, 
thus ensuring the integrity and security of the swarm mission. 

Asynchronous multi-party computation (AMPC) enables 
secure computations across networks where message delivery 
is not a rare event. For large, distributed systems, AMPC 
offers efficiency and flexibility compared to synchronous 
approaches by allowing parties to proceed with computations 
and actions as soon as they receive stimuli, rather than waiting 
for a global synchronization.  

II. RELATED WORKS 
Authors in [6] employ Beaver's circuit randomization over 

shared random multiplication triples, allowing each party to 
prepare its own multiplication triples. Given enough such 
shared triples, potentially partially known to the adversary, 
they developed a method to extract shared triples unknown to 
the adversary. This allows avoiding communication-intensive 
protocols and achieves a secure asynchronous multiparty 
computation. The work [7] presents an AMPC protocol with 
optimal resilience, involving 𝑛𝑛 =  3𝑡𝑡 +  1  parties and 
tolerating a computationally bounded static adversary, 
capable of corrupting up to 𝑡𝑡 parties. In the offline phase, the 
parties produce encryptions of random multiplication triples 
using a linearly homomorphic encryption scheme with 
support for one homomorphic multiplication. Random 
multiplication triples are used to securely evaluate the 
multiplication gates in the online phase, using Beaver's 
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circuit-randomization technique. Asynchronous Byzantine 
Agreement (BA) protocols [8] with subquadratic 
communication complexity tolerate an adaptive adversary 
who can corrupt    𝑓𝑓 < 1−𝜖𝜖

3
of the parties (for any 𝜀𝜀 > 0). 

Depending on the predefined scenario, initial setup by a 
trusted dealer is optional.   

Analysis of existing AMPCs shows the impracticality of 
deploying them in large, dynamic, or distributed networks: 
they lack mechanisms to support dynamic joining or leaving, 
which is essential in real-world systems like UAV swarms. 
They may also be fragile against malicious behavior, 
especially if more than a certain threshold of parties is 
corrupted. For dynamically reconfigurable swarms, 
robustness against Byzantine faults, Sybil attacks, or node 
compromise becomes insufficient. Besides, the computation 
process in some AMPC implementations is opaque and 
difficult to trace, verify, or explain. This limits their 
applicability in regulation-sensitive domains where 
auditability, explainability, and traceability are critical. As 
swarm systems increase in complexity, they become more 
prone to logical inconsistencies or anomalous behaviors. 
Without robust verification and mechanisms to trace decision 
pathways, these systems fail to provide justifiable 
explanations for behavioral shifts, ultimately eroding trust and 
regulatory compliance. 

The challenge with embedding AI is the lack of insight 
into the processes leading to the model outcomes, as well as 
to interpret the rationality to perform as intended and assert 
the flow of information through the network. Authors in [9] 
outlined a taxonomy for explanation methods:  rule-extraction 
methods, attribution methods, and intrinsic methods. Four 
concepts of explainability are given in [10]:  explain to justify, 
explain to control; explain to improve, and explain to 
discover. The authors preserved the principle of the Five W’s 
(What, Who, When, Why, Where, and How) to cover all 
aspects related to XAI. In [11], the authors present recent 
developments in explainability approaches from two different 
perspectives: ML models that feature some degree of 
transparency, thereby interpretable to an extent by themselves, 
and the post-hoc XAI techniques devised to make ML models 
more interpretable. The authors also develop the concept of 
Responsible AI, a paradigm that imposes a series of AI 
principles to be met when implementing in practice, including 
fairness, transparency, and privacy. Causality between 
features and the target variable tracing by injecting 
counterfactual explanations into the prediction model and 
generating counterfactual instances using adjusted features to 
reverse the prediction results is presented in [12]. The authors 
introduced a Counterfactual Explanation Generation method 
with the Minimal Feature Boundary (MFB), named (CEG 
MFB). The proposed CEG MFB algorithm consists of two 
stages: mining the MFB, which can reverse the prediction 
results to restrain the generation range of counterfactual 
instances, and constructing a counterfactual generative 
method for generating counterfactual instances within the 
MFB to realize the minimum reversing cost.  

In this paper, we outline our proposed asynchronous multi-
party computation (AMPC) framework, which integrates 
several mathematical domains to support secure, explainable, 
and adaptive decision-making in self-organizing UAV 
swarms.  

III. MATHEMATICAL PRELIMINARIES 
Mathematical foundations that support an asynchronous 

multi-party computation framework for resilient coordination 
in self-organizing swarms with explainability and intelligent 
control focus on definitely connecting AI/ML, logic, and 
algebraic structures to the core functions of the system. We 
propose developing the system based on the following pillars.  

• Asynchronous Message Passing 
• Threshold logic for algebraic cryptography 
• Model approximation 
• Quantifying decision influence 
For obtaining asynchronous message passing, we adopt 

proven methods formalized by eventual delivery using a 
special class of state machines, known as asynchronous 
labeled transition systems (ALTS).  ALTS is commonly used 
in distributed computing, communication protocols, 
consensus algorithms, and fault-tolerant solutions.  

Our proposed ALTS can be modeled as the following 
tuple. 

𝑀𝑀 = (𝑆𝑆, 𝑠𝑠0,𝑀𝑀,𝐴𝐴, 𝛿𝛿), where 
- 𝑆𝑆 is the set of states, 
- 𝑠𝑠0𝜖𝜖𝜖𝜖 is the initial state, 
- M is the set of messages, 
- A is the set of actions partitioned into 

o 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚)for messages 𝑚𝑚 ∈ 𝑀𝑀subject to send, and  
o 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)for messages 𝑚𝑚 ∈ 𝑀𝑀subject to receive 

-  𝛿𝛿 ⊆ 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 is the transition relation. 
Message queue is developed according to the swarm 

mission performance, based on standard I/O protocol, FIFO, 
depending on the embedded semantics. 

In self-organizing swarms with a strong membership 
verification and information full exchange, where every 
process is known to every peer, implementing the algorithm 
of Birman et al., 1999, is widely recommended. It uses gossip, 
a.k.a. epidemic dissemination of messages. Messages are 
delivered to all recipients, even if the sender fails before 
sending to all. The algorithm is fault-tolerant against crash 
failures and a number of link failures.  

In our construction, we incorporate the Birman algorithm 
in the state machine implementation.   

IV. PREMISES FOR CONSTRUCTION 
We propose developing a verifiable secret sharing based 

on non-commutative and non-associative algebraic groups. 
Conventional Shamir’s threshold scheme lacks intrinsic share 
verification during the reconstruction phase, which exposes 
the protocol to adversarial injection of forged shares by 
unauthorized entities. Such attacks can trigger incorrect 
computations and redundant communication inclusion into 
the swarm, ultimately leading to increased energy drain and 
premature battery depletion in resource-constrained devices.   

We select 𝑛𝑛 random elements from a quasigroup (Q, * /, \). 

𝑠𝑠1, 𝑠𝑠2, … 𝑠𝑠𝑛𝑛 ∈ 𝑄𝑄 

The three operations of the quasigroup are multiplication (∗), 
left division (/), and right division (\), each resulting in different 
outcomes and having their own inverses. The multiplication 
operation for a selected quasigroup may be a Latin square.   

In our construction, we involve all three operations. 
Appropriate inverses of the quasigroup. Inverse operations 
may be outlined as follows.  
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𝑠𝑠𝑛𝑛1 = 𝑠𝑠1  ∗−1  𝑠𝑠2 ∗−1 … ∗−1 𝑠𝑠𝑛𝑛−1, 

𝑠𝑠𝑛𝑛2 = 𝑠𝑠1 /−1 𝑠𝑠2/−1 …/−1𝑠𝑠𝑛𝑛−1, 

𝑠𝑠𝑛𝑛3 = 𝑠𝑠1 \−1 𝑠𝑠2\−1 …\−1𝑠𝑠𝑛𝑛−1. 

The verification of the shares and the reconstruction of the 
secret are performed by the chain of computations. 

𝑠𝑠 = 𝑠𝑠𝑛𝑛1 ∗  𝑠𝑠𝑛𝑛1−1 ∗  𝑠𝑠𝑛𝑛1−2 ∗ … ∗ 𝑠𝑠1 

𝑠𝑠 = 𝑠𝑠𝑛𝑛2/ 𝑠𝑠𝑛𝑛2−1/ 𝑠𝑠𝑛𝑛2−2/ …/𝑠𝑠1 

𝑠𝑠 = 𝑠𝑠𝑛𝑛2\ 𝑠𝑠𝑛𝑛2−1 \ 𝑠𝑠𝑛𝑛2−2\ …\𝑠𝑠1 

Note that quasigroup computer representation is very 
efficient due to utilization of solely logical operations: lookup 
of the quasigroup square matrices. 

In our construction, we will approximate  
• system dynamics, 𝑠𝑠 = 𝑓𝑓(𝑠𝑠,𝑢𝑢), where 𝑠𝑠 is the current 

state, and 𝑢𝑢 is a control input signal. 
• environmental stimuli: e.g., obstacles, noise, signal 

interference, etc. 
• sensor or actuator behavior: e.g., latency, drift. 
• control policy to approximate a function that maps 

state to control: 𝑢𝑢 = 𝑔𝑔(𝑥𝑥). 
For the model interpretability and explainability, a Linear 

model will be selected as a basic predictable solution. For high 
expressiveness, a suitable neural network will be promoted 
and tested. Then, a learning model will be constructed 
accordingly along with the error rate minimization tactics. By 
deploying a control-theoretic logic along with rule-based 
agent behavior, the system will govern how a peer: 

• accepts or rejects contributions from others (e.g., 
based on trust scores or behavioral history), 

• adjusts computation strategies in response to 
environmental or network dynamics. 

• enables adaptive MPC parameters (thresholds, 
weights) based on network observations, monitored 
asynchronously. 

Ephemeral identities and token-based authentication (e.g., 
using blind signatures) will allow peers dynamically join or 
leave without compromising the swarm computational 
integrity and network dynamic topology. During the mission 
performance, peers broadcast signed summaries of: 

• why a certain output was accepted? 
• which input factors influenced the outcome? 

All explanations utilize a Zero-knowledge proof (ZKP) to 
validate the exchanged information without exposing secrets. 
To achieve the swarm intelligent control, an eponymous 
module will be developed to promote:  

• trust metrics based on past participation and accuracy 
rate 

• rule-based systems over fuzzy logic for decision 
tuning, and 

• reinforcement signals in terms of feedbacks from 
environment. 

In order to construct a trusty model and to measure how 
much an individual input, agent, or component influences the 
final decision or current outputs, we involve a gradient-based 
influence approach, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑥𝑥𝑖𝑖 to assess how sensitive the output 
𝑦𝑦 is to small changes in 𝑥𝑥𝑖𝑖.  

The predefined threshold values controlling the 
boundaries will detect the outliers pointing to the shift of the 

system expected behavior. Here, logging of all internal 
processes will be conducted by recording all appropriate and 
non-appropriate outcomes. This traceability of the system will 
reveal, interpret and control the overall system behavior under 
decisions made by the AI. 

To assess the cumulative influence, the following metric 
of the integrated gradient will be involved (Sundarajan and al, 
2017). 

𝐼𝐼𝐼𝐼 (𝑥𝑥) ≔ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′ × ∫ 𝑑𝑑𝑑𝑑(𝑥𝑥′+𝛼𝛼×(𝑥𝑥−𝑥𝑥′))
𝑑𝑑𝑥𝑥𝑖𝑖

1
𝛼𝛼=0 )𝑑𝑑𝑑𝑑. 

 
Here, the integral is taken along a straight path from the 
baseline 𝑥𝑥′ to the instance 𝑥𝑥 parameterized by the parameter 
𝛼𝛼. 

For model approximation, a local surrogate model, Local 
Interpretable Model-agnostic Explanations (LIME), is 
applied. Local surrogate model is a classical technique, used 
to explain individual predictions of a "black-box" machine 
learning model output in the region of a specific data point.  

To explain the entire system black-box model's behavior, 
global surrogate models will be involved accordingly. 

Local surrogate models with interpretability constraint are 
expressed as follows: 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑓𝑓,𝑔𝑔,𝜋𝜋𝑥𝑥� + Ω(𝑔𝑔),𝑔𝑔 ∈ 𝐺𝐺 

 
Here, 

• 𝑥𝑥 is an instance 
• 𝐿𝐿 is the loss function measured by mean square error 
• 𝑓𝑓 is the original model 
• 𝑔𝑔 is the model under construction, which may be a 

linear regression model 
• 𝜋𝜋𝑥𝑥  is the proximity measure which outlines the 

neighborhood around the given instance considered 
for the explanation. 

• Ω(𝑔𝑔) is the measure of the model complexity. With 
fewer features, this complexity will be kept low. 

 
In practice, LIME optimizes the loss part. 
Then, we select a target instance for which we will get the 

required explanation for its black box prediction. Database 
sampling with new points will reveal the weights of 
proximities. Then, the analysis of a weighted interpretable 
model on the dataset will explain the prediction by 
interpreting the local model. 

In our construction, we embed the following model. 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤0 + �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑡𝑡−1

𝑖𝑖=0

  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

 
We involve SHAP (Shapley Additive Explanations), 

which is another efficient machine learning technique for 
model explainability, widely used in game theory. Here, each 
feature is assigned a numerical rate value that reveals the 
feature contribution to a model's prediction for a specific 
instance across the entire dataset. It addresses the "black-box" 
problem of complex models by providing both local (per-
instance) and global (overall model) insights into how features 
influence predictions. Meanwhile, feature attribution will 
incorporate the so-called Shapley values from cooperative 
game theory.  
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𝜙𝜙𝑖𝑖(𝑓𝑓) = �
|𝑆𝑆|! (𝑛𝑛 − |𝑆𝑆| − 1)!

𝑛𝑛!
𝑆𝑆⊆𝑁𝑁{𝑖𝑖}

[𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑓𝑓(𝑆𝑆)] 

Here, 
• 𝑛𝑛 is the number of players 
• the sum extends over all subsets 𝑆𝑆  and 𝑁𝑁  not 

containing player 𝑖𝑖, including the empty set. 
 

Shapley values provide a "fair share" or "payout" for each 
feature by reflecting its impact on the deviation of the 
prediction from the average model output. 

Finally, the decision influence will be estimated using 
quantification of the mutual information, as follows: 

𝐼𝐼(𝑋𝑋𝑖𝑖;𝑌𝑌) = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋𝑖𝑖). 
Control rules will be modeled as predicate expressions of the 
form: 

𝑥𝑥 ∈ 𝑃𝑃: 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) > 𝜏𝜏 ⇒ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥). 
 
As a representational model of trust for the evaluation of 
propositional logic terms, probability and fuzziness under 
uncertainty, proven models given in [12-16] will be evaluated 
for appropriateness and applied. 

The proposed AMPC model will embed the Shortest 
Vector Problem (SVP) adapted to lattices over algebraic 
number fields rather than standard Euclidean lattices over 𝑍𝑍𝑛𝑛. 
Lattice-based cryptographic solutions are secure even against 
quantum attacks. The algebraic lattice will be constructed over 
the ring of integers 𝑅𝑅𝐾𝐾 of a number field 𝐾𝐾.  

Given a lattice ℒ ⊂ 𝑅𝑅𝑛𝑛  generated by a basis 𝐵𝐵 =
{𝑏𝑏1, … , 𝑏𝑏𝑛𝑛}, the SVP asks for a non-zero vector 𝑣𝑣 ∈ ℒ{0} such 
that  

�|𝑣𝑣|� = min (||𝑤𝑤||), 
𝑤𝑤𝑤𝑤 ℒ{0}. 

 
We base our construction on the module SVP (MSVP), which 
generalizes SVP over modules in 𝑅𝑅𝐾𝐾. 

With a secret lattice embedded in the swarm peers’ 
hardware, multi-party computation will verify the secret 
attributes and coefficients of the ring of integers 𝑅𝑅𝐾𝐾. 

V. CONCLUSION 
At its core, the proposed framework employs algebraic 

cryptographic techniques over finite fields to enable privacy-
preserving computations without requiring synchronous 
communication. The system tolerates asynchrony and partial 
network participation through threshold-based reconstruction 
and verifiable secret sharing. For explainability, the 
framework leverages interpretable machine learning 
techniques, such as local surrogate models and Shapley value 
analysis, to attribute decision outcomes to individual input 
contributions in a mathematically principled manner. 
Adaptive behavior is supported through reinforcement 
learning, enabling peers to refine their strategies based on 
local observations and feedback. Modal and temporal logic 
are used to formalize the reasoning over knowledge states and 
control flow, while graph-theoretic methods underpin peer 
discovery, group formation, and secure communication 
structures. This mathematical foundation ensures the 
framework’s capacity to function securely and intelligibly in 
complex, distributed, and delay-tolerant environments. 
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