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Abstract—This paper addresses the robust control problem 

for an unmanned aerial vehicle (UAV) equipped with a 2-DOF 

robotic manipulator, designed for grasping and manipulating 

different payloads. The UAV-manipulator system experiences 

significant dynamic variations caused by manipulator 

movements and interactions with the payload, resulting in 

changes to the system’s inertia matrix and displacements of the 

system’s center of mass (CoM). To overcome this, we propose an 

intelligent gain-scheduled control approach that avoids online 

model computations. This is achieved by clustering the system’s 

configuration space, with the optimal number of clusters. For 

each region, a local nominal inertia matrix is selected, and a PD 

controller is designed and tuned using a Genetic Algorithm (GA). 

Simulation results demonstrate that the proposed method 

improves the robustness and performance of the system across a 

wide range of configurations. 

Keywords—Unmanned aerial vehicle, robot manipulator, 

intelligent control system, gain-scheduling. 

I. INTRODUCTION  

UAVs equipped with robotic manipulators, commonly 

referred to as aerial manipulators, have become a very popular 

research topic in the last decade. By combining aerial mobility 

with the ability of physical interaction with the world, these 

systems are offering a solution for hard-to-reach environment 

tasks. The aerial manipulators are used in diverse fields like 

military applications, photography and inspection, 

transportation, architecture, building, and construction [1].  

However, aerial manipulators introduce a lot of challenges 

in system modelling and control. The dynamic coupling 

between UAV and manipulator introduces strong 

nonlinearities and time-varying dynamics. These variations, 

caused by manipulator movement and payload interactions, 

bring changes in the system’s inertia matrix and 

displacements in CoM. These dynamic variations lead to a 

highly complex and non-robust control problem, making it 

hard to keep stable and precise control across the range of 

possible configurations and payloads. 

To address this, researchers have proposed various robust 

and adaptive control methods. Sliding mode and 𝐻∞ 

controllers have been used in handling bounded disturbances 

[2, 3], while neural network and backstepping approaches 

have been applied for variable inertia compensation and 

payload adaptation [4, 5]. Some works directly estimate the 

inertia matrix [6] or use adaptive observers for disturbance 

rejection [7]. 

Despite these advances, many existing methods require 

full symbolic modelling or real-time calculations of the 

dynamics. Traditional robust control approaches are often 

based on overly conservative global bounds for uncertainties, 

which can limit the system’s performance and agility. 

Alternatively, methods that require real-time intensive 

computations are impractical for fast aerial manipulation 

tasks.   

To overcome these limitations, we introduce an intelligent 

gain-scheduling control approach. Our method avoids online 

model computations by dividing the configuration space 

through clustering, where each region has its fixed local 

model and offline-tuned controller. The system’s dynamics 

are linearized using approximate inverse dynamics [8], and 

the structured uncertainties are modelled by Linear Fractional 

Transformation (LFT) method [9]. For each local region, PD 

controllers are tuned using a GA to satisfy the robustness 

conditions [10]. 

The main contributions of this paper are: 

 Linearization and uncertainty separation using 

approximate inverse dynamics. 

 Intelligent configuration space clustering based on 

uncertainties. 

 Region-based PD controller design via GA. 

 Robustness verification using the Small Gain Theorem. 

II. SYSTEM MODELLING AND PROBLEM FORMULATION 

In this paper, we consider a quadrotor UAV with a 2-DOF 

planar manipulator attached below the UAV body, as shown 

in Fig. 1. To describe the system,  two frames are considered: 

the inertial frame {I} and the body fixed frame {B}. The 

transformation between them is given by the rotation 𝑅𝐼𝐵 
matrix, constructed from the UAV’s Euler angles (roll, pitch, 

yaw) using a ZYX convention.  

The UAV is modeled as a 6-DOF rigid body: with 3 

translational coordinates and 3 rotational angles. The 

manipulator consists of two revolute joints that operate in the 

vertical plane beneath the UAV. The system is defined by six 

generalized coordinates:  
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𝑞 = [𝑧, 𝜙, 𝜃, 𝜓, 𝜀1, 𝜀2]𝑇 ,                        (1) 

where 𝑧 is the UAV’s height in the inertial coordinates,Ω =
[𝜙, 𝜃, 𝜓] 𝑇 denotes the UAV’s Euler angles, and Υ = [𝜀1, 𝜀2]𝑇 

are the joint variables of the robotic arm. 

 
Fig. 1. UAV-manipulator system 

The nonlinear coupled dynamics are derived using Euler-

Lagrange formalism, resulting in the standard form [11]: 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏 + 𝜏𝐷.             (2) 

where 𝑀(𝑞) is 𝑅6𝑥6 symmetric, positive-definite inertia 

matrix, 𝐶(𝑞, 𝑞̇) contains Coriolis and centrifugal terms, 𝐺(𝑞) 
is the gravity vector, 𝜏 is the generalized control inputs, and 

𝜏𝐷 is the disturbance forces. For simplicity in notation, we set:  

𝑁(𝑞, 𝑞̇) = 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) − 𝜏𝐷,               (3) 

thus, equation (2) can be rewritten as: 

𝑀(𝑞)𝑞̈ + 𝑁(𝑞, 𝑞̇) = 𝜏.                        (4) 

This equation is linear in the control 𝜏, and has full-rank 

𝑀(𝑞) , which can be inverted for any valid configuration. 

Taking the control 𝜏 as a function of the manipulator state in 

the form: 

𝜏 =  𝑀(𝑞)𝑦 + 𝑁(𝑞, 𝑞̇),                        (5) 

leads to the system described by 

𝑞̈ = 𝑦                                       (6) 

where 𝑦 represents a virtual input vector [8]. 

This ideal linearization, however, requires online 

computation of the exact time-varying 𝑀(𝑞)  and 𝑁(𝑞, 𝑞̇) , 

which is computationally expensive, impractical, and in some 

cases impossible for real-time aerial manipulation tasks. To 

overcome this, we propose to use an offline computed fixed 

nominal model (𝑀̂, 𝑁̂) in the inverse dynamics controller:  

𝜏 =  𝑀̂(𝑞)𝑦 + 𝑁̂(𝑞, 𝑞̇).                       (7) 

By introducing the nominal model into the inverse 

dynamics, the true dynamics can be separated into a nominal 

linear model (a double integrator) and structured nonlinear 

uncertainties, in the form: 

𝑞̈ = 𝑦 +△𝑚 𝑦 +△𝑎,                        (8) 

where △𝑚, △𝑎 are multiplicative and additive uncertainties: 
△𝑚= 𝑀−1(𝑞)𝑀̂(𝑞) − 𝐼,                      (9) 

△𝑎= 𝑀−1(𝑞)𝑁(𝑞, 𝑞̇),                      (10) 

𝑁(𝑞, 𝑞̇) = 𝑁̂(𝑞, 𝑞̇) − 𝑁(𝑞, 𝑞̇).               (11) 

 

Fig. 2. Block diagram of the UAV-manipulator system 

Fig. 2 shows the resulting interconnections of the double 

integrator plant and the structured multiplicative and additive 

uncertainties. 

III. CONTROLLER DESIGN 

The proposed intelligent gain-scheduling strategy aims to 

design robust controllers for the UAV-manipulator system by 

partitioning its configuration space and tuning local 

controllers offline. This section describes the robust control 

framework, the configuration-space clustering method, and 

the AI-based PD controller tuning approach. 

A. Small Gain Theorem 

The structured uncertainties are modeled using the LFT 

framework for robustness analysis. As shown in Fig. 3, the 

feedback interconnection consists of a nominal generalized 

plant 𝑃 and a block-diagonal uncertainty:   

△ =  [
△𝑚 0

0 △𝑎
].                            (12) 

The interconnection matrix 𝑃(𝑠)  maps the uncertainty 

blocks (𝑤𝑚 from △𝑚, 𝑤𝑎 from △𝑎) to their respective inputs 

(𝑧𝑚, 𝑧𝑎) through the nominal closed-loop system. For our 6-

DOF system with a diagonal plant 𝑃𝑝𝑙𝑎𝑛𝑡(𝑠) =

𝑑𝑖𝑎𝑔{
1

𝑠2 , … ,
1

𝑠2}  and a diagonal PD controller 𝐾(𝑠) =

𝑑𝑖𝑎𝑔{𝐾1(𝑠), … , 𝐾6(𝑠)}, where each 𝐾𝑖(𝑠) = 𝐾𝑝𝑖(𝑠) +

𝐾𝑑𝑖(𝑠)/(Τ𝑠 + 1) , where Τ  is the time constant for the 

derivative filter, interconnection matrix 𝑃(𝑠) is a 12x12 block 

matrix given by: 

𝑃(𝑠) = (
−𝑑𝑖𝑎𝑔 {

𝐾(𝑠)

𝑠2+𝐾(𝑠)
} −𝑑𝑖𝑎𝑔 {

𝐾(𝑠)

𝑠2+𝐾(𝑠)
}

𝑑𝑖𝑎𝑔 {
1

𝑠2+𝐾(𝑠)
} 𝑑𝑖𝑎𝑔 {

1

𝑠2+𝐾(𝑠)
}

).     (13) 

For robustness analysis, we use the Small Gain Theorem 

[9], which provides a condition for robust stability in the 

presence of norm-bounded uncertainties. For our system, the 

stability is guaranteed if the supremum of the structured 

singular value 𝜇∆(𝑃(𝑗𝑤)) is less than 1 across all frequencies:   

sup
𝑤

𝜇∆(𝑃(𝑗𝑤))  < 1.                       (14) 

Using the more conservative 𝐻∞ norm product, robust 

stability is guaranteed if ‖𝑃(𝑠)‖∞ ∙ ‖△‖∞ <1. The robust 

stability margin (𝛽) is defined as the inverse of this product: 

𝛽 =
1

‖𝑃(𝑠)‖∞∙‖△‖∞
.                          (15) 

For robust stability, the margin 𝛽 should be greater than 1. 

However, directly applying this condition across the full 

configuration space is either infeasible or results in overly 

conservative bounds, as △  can grow large in some 

configurations, for example, payload interactions. 

 

 
Fig. 3. LFT model of the system 
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To resolve this, we propose a strategy based on 

configuration-space partitioning. Instead of forcing a global 

robustness condition, we divide the space and apply the 

condition locally in each region. This method reduces 

uncertainty within each region and makes robust control 

design feasible. The next subsection details the clustering 

method used to achieve the partitioning. 

B. Configuration-Space Clustering 

To minimize the uncertainty in each region and make the 

small gain condition feasible without general conservatism, 

the configuration space is sampled across its possible ranges 

based on UAV states (Euler angles), manipulator joint angles 

𝜀1, 𝜀2, and payload mass. For each sampled point, the 𝐻∞-

norm of the uncertainty △  is evaluated by computing the 

deviation from a fixed local nominal 𝑀̂, 𝑁̂.  

An AI-based clustering algorithm (K-Means) then divides 

the configuration space into regions with similar dynamic 

characteristics. A nominal inertia matrix 𝑀̂ is calculated 

offline for each cluster center. 

The determination of the optimal number of clusters (K) is 

important for balancing uncertainty reduction against 

controller complexity. We employ the Elbow Method [12] to 

intelligently select K, with the following steps: 

1. Running the K-Means algorithm for a range of K 

values. 

2. Calculating the Sum of Squared Errors (SSE) for each 

K, which shows the compactness of clusters. 

3. Plotting the SSE against K (Fig. 4). The “elbow” point 

in the curve, where the rate of decrease in SSE 

significantly slows down, indicates the optimal 

number of clusters. 

      For each region, precomputed bounds γi on the norm of  

△i are used in the robustness condition. 

 
Fig. 4. Elbow method for optimal K 

C. Gain-Scheduled PD Controller 

     In each clustered region of the configuration space, a local 

PD controller is designed as: 

𝑦 = 𝐾𝑝𝑖(𝑞𝑟𝑒𝑓𝑖 − 𝑞𝑖) +
𝐾𝑑𝑖

Τ𝑠+1
(𝑞̇𝑟𝑒𝑓𝑖 − 𝑞̇𝑖).          (16) 

To automate and optimize the PD gains 𝐾𝑝 and 𝐾𝑑 tuning 

process across all regions, we are using a GA-based approach. 

The GA finds the 12 gain parameters (6 𝐾𝑝 and 6 𝐾𝑑) for each 

cluster by maximizing the reward function. The reward for 

each region is defined as: 

𝑅 = −[𝛼1𝑒 + 𝛼2‖𝜏‖2 + 𝛼3max (0, ‖△𝑖‖∞‖𝑃(𝑠)𝑖‖∞ − 1)], 
where 𝑒 is the Root Mean Square Error (RMSE) of the step 

response,  ‖𝜏‖2 is the Integral of Squared Control Input (ISU), 

𝛼1, 𝛼2, 𝛼3 are weighting coefficients.  

Once trained offline, the GA provides optimal PD gains 

for each cluster. This gain schedule is then fixed and used 

during the runtime, avoiding online computations and 

ensuring robustness in each region. 

IV. SIMULATION AND RESULTS 

This chapter presents the simulation setup, the results 

obtained from applying the proposed intelligent gain-

scheduling control approach, and a discussion of the system’s 

performance and robustness. 

Simulations were conducted in Matlab software to 

evaluate the performance and robustness of the UAV-

manipulator system. The configuration space of the UAV-

manipulator system, defined by its 6 generalized coordinates, 

was systematically sampled across its feasible range. The 

inertia matrix 𝑀(𝑞) for each sampled point was calculated 

using a detailed nonlinear dynamic model. Based on these 

characteristics, the configuration space was divided into 

K=300 distinct regions using the K-Means clustering 

algorithm.  

For each clustered region, a local PD controller was 

designed. The controller coefficients were tuned offline using 

the GA method. The GA’s objective function was designed to 

minimize the tracking error, control effort, and maximize the 

robustness margin. A derivative filter with a time constant of 

Τ=0.01 seconds was used in the PD controller to ensure proper 

implementation and noise reduction.  

Fig. 5 illustrates the distribution of the uncertainty norms 
‖△𝑖‖∞ across the sampled configuration space, color-coded 

by cluster. This localized bounding of uncertainty is 

fundamental to enabling the robust control design for each 

region, as it ensures that uncertainty within any given cluster 

is significantly smaller than a global bound would be.   

 

 
Fig. 5. Clustered uncertainty norms 

 

A comparative analysis of the closed-loop step responses 

is shown in Fig. 6. The blue solid line represents the mean 

nominal step response of a single, globally tuned PD 
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controller, while the red dashed line shows the mean nominal 

step response of the gain-scheduled PD controllers across all 

clusters. The gain-scheduled system exhibits a much faster 

rise time and settling time, with reduced overshoot, compared 

to the global controller. The better performance is a direct 

consequence of the localized tuning. This adaptability allows 

for maintaining high performance despite the time-varying 

dynamics of the UAV-manipulator system. 

 
Fig. 6. Closed-loop step response comparison (mean output) 

 

Fig. 7 is a validation of the robust stability achieved by 

GA-tuned controllers. The figure displays the robust stability 

margin (𝛽) for each clustered region. As shown in the figure, 

the robust stability margin for all clustered regions is 

consistently above 1. This demonstrates that the GA 

successfully tuned the PD gains to satisfy the Small Gain 

Theorem. This result is a key achievement, as it confirms that 

the intelligent gain-scheduling approach effectively 

guarantees the stability of the UAV-manipulator system in the 

presence of its structured uncertainties across its entire 

operational envelope, without requiring overly conservative 

designs or online nonlinear model computations. 

 

 
Fig. 7. Robust stability margin per cluster region 

V. CONCLUSION 

The simulation results collectively highlight the efficacy 

of the proposed intelligent gain-scheduling control strategy. 

By intelligently partitioning the configuration space and 

employing a GA for offline PD gain optimization, the system 

effectively addresses the challenges posed by UAV-

manipulator dynamic coupling and time-varying inertia. 

The clustering method successfully localizes the 

uncertainties, making robust control design feasible for each 

region. The GA-tuned controllers not only demonstrate 

superior performance but also satisfy the robust stability 

conditions across all identified operational regions. The 

method avoids the computational burden of online model 

computation, making it well-suited for real-world fast 

manipulation tasks. 
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