
AI and NLP Models for Q&A in Georgian

Sergo Tsiramua
University of Georgia

Tbilisi, Georgia
e-mail:s.tsiramua@ug.edu.ge

Hamlet Meladze
Muskhelishvili Institute of

Computational Mathematics of
Georgian Technical University,

Tbilisi, Georgia
e-mail: h_meladze@hotmail.com

Tinatin Davitashvili
Ivane Javakhishvili Tbilisi State

University,
Tbilisi Georgia

e-mail: tinatin.davitashvili@tsu.ge

Davit Bitmalkishev

University of Georgia
Tbilisi, Georgia

e-mail: davit.bitmalkishev@ug.edu.ge

Tatia Elbakidze

University of Georgia
Tbilisi, Georgia

e-mail: tatia.elbakidze@ug.edu.ge

Abstract—The paper discusses the application of NLP
technologies for the Georgian language in a question-answering
format. In the developed web application, based on pre-uploaded
PDF files, users can ask questions in Georgian related to
document content via an NLP system and receive relevant
answers in text and audio formats. The system analyzes uploaded
documents, breaks down PDFs into vectors, processes them
using the cosine similarity algorithm, and generates relevant
answers. This required integrating several components:
developing a Flask Web application, enabling PDF processing,
using embeddings with a database, and creating a question-
answering module. To ensure efficient information processing,
the LangChain framework, OpenAI’s language models, and
ChromaDB were used.

The purpose of developing this NLU (Natural Language
Understanding) technology was to simplify information retrieval
from large document volumes and generate fast, accurate,
context-based responses. The use of NLU technology ensured the
system's speed, simplicity, flexibility, efficiency, and adaptability
to various needs and technological requirements. This system
can be applied in fields where users deal with large textual data,
including education, business, and research.

Keywords—Artificial intelligence, language processing

technology, language models, cosine similarity algorithm.

I. INTRODUCTION
In today’s information-driven environment, with the

growing volume of digital documents, the need for intelligent
systems that process, analyze, and retrieve relevant
information from these documents is becoming increasingly
important. Traditional document search methods are often
labor-intensive and time-consuming, creating a demand for
more intelligent and interactive solutions.

The rapid digitization of information in the modern world
generates massive amounts of data stored in various formats,
including PDF files. The documents of this format are widely
used across all areas of human activity where in-depth
analysis of large volumes of text is required. However, finding
the desired information within these documents is often labor-
intensive and time-consuming. Traditional search functions in

PDF programs are limited, as they cannot understand context,
meaning, or content through simple keyword searches.

With advancements in artificial intelligence (AI) and
natural language processing (NLP) technologies, there is a
growing demand for applications capable of complex text
analysis. Moreover, in the era of remote work and online
collaboration, such applications become essential tools for
improving productivity and access to information. The
relevance of this work lies in its potential to transform how
users interact with digital documents - making it faster and
more efficient to retrieve and process the necessary
information.

This paper discusses the development of a technology and
application that allows uploading, processing, and answering
user questions based on the content of Georgian-language
documents in PDF format. The combination of a Retrieval-
Augmented Generation (RAG) system and the GPT-4o model
opens up new possibilities for more intelligent and faster
interaction with documents. The application enables users to
interact with documents dynamically: they can ask questions,
and the system provides accurate answers in real time - greatly
enhancing the efficiency of working with large-scale
documents.

Based on the project objectives, the following tasks were
carried out:
1. PDF File Upload and Vectorization Functionality

Developed: Users can upload PDF documents into the
application, which converts them into vectors using the
Text-embedding-3-large model.

2. Integration of the RAG System Using the GPT-4o Model:
The RAG system was integrated, utilizing the GPT-4o
model to understand information in context and provide
accurate answers to questions.

3. Use of the Text-embedding-3-large Model: Integration of
the Text-embedding-3-large model enabled the system to
store the corresponding vector data of the text, allowing
the system to retrieve relevant context in response to user
queries.

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_11 51

4. Development of a Flask-based Web Application: A web
application built with Flask was created, ensuring system
speed, flexibility, and scalability.

5. Information Retrieval and Question-Answering
Mechanism Developed: An interface was developed
within the application that allows users to ask questions
based on the document content and receive accurate
answers quickly.
Given the relevance of the project and the growing

demand for similar services, the product we have developed
can be applied across various fields, including business, the
legal sector, healthcare, education, online learning, and more.

II. NLP TECHNOLOGIES FOR Q&A
Natural Language Processing (NLP) is a combination of

artificial intelligence, computer science, and linguistics that
processes human language in a way that is understandable to
computers. As AI-powered devices and services become
increasingly integrated into our daily lives, the influence of
NLP continues to grow, enabling seamless interaction
between humans and technology [1].

NLP involves various techniques for analyzing human
language. Some of the most common techniques encountered
in this field include:
1. Sentiment Analysis: An NLP technique that analyzes text

to determine sentiment, such as “positive”, “negative”, or
“neutral”. Sentiment analysis is widely used in business to
better understand customer feedback.

2. Summarization: An NLP technique that summarizes
longer texts to make them more accessible for time-
constrained readers. These typically include reports and
articles.

3. Keyword Extraction: An NLP technique that analyzes text
to identify the most important keywords or phrases.
Keyword extraction is used for search engine optimization
(SEO), social media monitoring, and business research.

4. Tokenization: The process of breaking text into "tokens" -
words, symbols, or subwords - that a program can analyze.
Tokenization is widely used in NLP tasks such as word
modeling, building lexicons, and identifying frequently
occurring words [2, 3].
While NLP can be applied in a wide range of applications,

the technology is still far from perfect. In fact, many NLP
tools struggle to accurately interpret sarcasm, emotion, slang,
context, errors, and other forms of ambiguous expression.
This means NLP remains somewhat limited.

Retrieval-Augmented Generation (RAG) System, GPT
4o and Text-Embedding-3-Large Model. With the
development of Large Language Models (LLMs), the NLP
field has undergone a transformative shift, enabling
significant improvements in language understanding,
generation, and contextual applications. However, managing
and searching high-dimensional vector embeddings remains a
major challenge in building scalable systems based on LLMs.
ChromaDB, a vector database, and LangChain, a framework
for building complex LLM-based applications, represent key
innovations in this domain. In the following sections, we will
explore the integration of ChromaDB and LangChain, aimed
at creating efficient and scalable architectures for real-world
applications such as document retrieval, conversational
agents, and personalized recommendation systems. This

combination reduces complexity, improves response speed
for question answering, and optimizes the scalable use of
LLM applications [4].

Nonetheless, scaling these models and using them
efficiently in real-world operations presents significant
challenges. The embeddings generated by these models
require efficient storage and search mechanisms, especially
for tasks such as semantic search or personalized content
delivery. Traditional databases, optimized for structured data,
struggle with processing high-dimensional vector data, which
calls for specialized solutions for embedding management,
indexing, and retrieval.

The use of LLMs in modern NLP applications has led to
the generation of high-dimensional embeddings that encode
linguistic information. These embeddings are typically used
in tasks such as document retrieval, text classification, and
named entity recognition. They allow for a more nuanced
understanding of semantic similarity than traditional
keyword-based approaches.

However, as the size of these models and their associated
datasets grows, managing and retrieving embeddings
becomes increasingly complex. Techniques like exact nearest
neighbor search become impractical for real-time use when
dealing with high-dimensional data. To mitigate these
challenges, indexing and approximate search methods have
been proposed, including Locality-Sensitive Hashing (LSH)
and k-d trees [5].

Vector databases are optimized for storing and retrieving
high-dimensional embeddings. Unlike traditional databases,
which are designed for structured data, vector databases are
built to handle dense vectors generated by machine learning
models. Tools like FAISS (Facebook AI Similarity Search),
Pinecone, and Milvus have been developed to meet this need.

Chroma DB stands out by offering specialized support for
real-time applications, focusing on scalability, real-time
embedding storage, and fast similarity search. Its optimized
indexing structures assist dynamic LLM applications, where
embeddings are frequently generated and queried in real time.

LangChain simplifies the development of LLM-based
applications by providing an abstraction layer for creating
dynamic pipelines. It enables developers to build modular
chains that connect LLMs with external tools such as
databases, APIs, and memory components. LangChain
facilitates dynamic querying, memory retention, and
interaction with embeddings, offering flexibility for solving
complex NLP tasks [6].

Unlike other frameworks, such as Hugging Face
Transformers, which primarily focus on model inference,
LangChain integrates LLMs into broader workflows that
require continuous interaction with data sources, memory
management, and query optimization. This makes it ideal for
building applications where context retention and real-time
interaction are critical, such as virtual assistants, chatbots, and
recommendation engines.

Integrating vector databases into NLP pipelines presents
challenges. Managing large volumes of high-dimensional
embeddings is complex, and retrieving embeddings
effectively in real time requires optimized indexing strategies.
The use of Approximate Nearest Neighbor (ANN) search
techniques improves retrieval speed, but often results in trade-
offs with accuracy, requiring careful balancing between
precision and performance.

52

Additionally, embedding management in LLM
applications must account for dynamic updates, as
embeddings may evolve over time based on user interactions
or incoming data. This requires databases capable of handling
frequent writes and updates while maintaining low-latency
querying performance.

Euclidean distance measures absolute difference in
coordinates and is sensitive to magnitude/scale [7].

Cosine similarity measures directional alignment (the
angle); it is invariant to uniform rescaling of the vectors —
useful when only orientation matters (e.g., text embeddings,
high-dimensional sparse data) [8].

III. REALIZATION OF NLP TECHNOLOGY
A web application based on NLP technology is capable of

learning from uploaded PDF files and answering user
questions based on the content of the document [9].
The project consists of several components:
1. The main Flask application file, where the functionality

for text processing and question answering is defined
using the Flask framework. Additionally, the application's
routing is configured here.

2. An HTML file, which defines the structure of the web
application and, using JavaScript, implements the
functionality for uploading PDF files and submitting
questions.

3. A CSS file, which provides the visual styling of the web
application.

4. The Upload folder, where PDF files uploaded by users are
stored.

5. The Chroma folder, where information obtained from text
processing is stored.
Discussion of the Flask application file. The core logic

of the project handles text processing and answering user
questions. For this purpose, we use the Text-Embedding-3-
large and GPT-4o models for natural language processing,
along with the Chroma DB vector database.

After uploading the PDF file, the text contained within it
is processed. First, the text is divided into sections – chunks -
using a text splitter. Although it's possible to split the text into
individual sentences, this type of segmentation complicates
the process of retrieving accurate answers to user queries. In
this case, the text is divided into sections of 800 characters
(see Fig. 1). However, such segmentation may cause a section
to end in the middle of a sentence, potentially leading to a loss
of context. To avoid this, overlaps are used - specifically, an
80-character overlap. This means that after one chunk ends,
the next chunk starts 80 characters before the end of the
previous one. Finally, the resulting chunks are stored in
Chroma DB.

Fig. 1. Text Segmentation

After the text is divided into chunks, the processing phase

begins. Using a natural language processing model,
specifically Text-Embedding-3-Large, the text contained in
the chunks is converted into vectors. These vectors are then

stored in the vector database, Chroma DB, alongside their
corresponding chunks.

The same process applies to the user's question. The
question is processed using the Text-Embedding-3-Large
model and converted into vector data.

After completing the above processes, the question
answering phase begins.

The cosine similarity is calculated between the vector of
the user's question and the vectors stored in Chroma DB. This
process works as follows:
Cosine Similarity measures the angle between two vectors in
a multidimensional space and evaluates their semantic
similarity. It is defined as:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐵𝐵) =
𝐴𝐴 ⋅ 𝐵𝐵

∥ 𝐴𝐴 ∥⋅∥ 𝐵𝐵 ∥
,∈ [−1,1]

where:
• A⋅B is the dot product of the two vectors,
• ∥A∥ and ∥B∥ are the magnitudes (lengths) of vectors A

and B.
The smaller the angle between the vectors, the closer the

corresponding text vector is to the answer. Based on the
ascending order of cosine similarity values, the system
retrieves the five vectors with the smallest angles from the
database. The texts corresponding to these vectors are then
processed by the AI model, GPT 4o. GPT 4o summarizes the
provided texts and returns a response according to the defined
task (Prompt) (see Fig. 2).

Fig.2. Prompt

Three routes are defined in the application:
1. Main route, which represents the main page of the

application, where users can upload PDFs and ask
questions. It uses the HTML file.

2. Upload route (/upload). This route accepts only POST
requests and is used for uploading files. It checks whether
a file has been uploaded. After processing the PDF, it
returns a message confirming the file was successfully
uploaded and divided into a specific number of chunks.

3. Query route (/query). This route accepts the user's question
in JSON format, processes it, and returns an answer from
GPT4o. The received answer is then sent back to the user.

Methods. For creating a web application, it is important to
use the necessary software packages, algorithms, and
technologies. The technologies we select influence the quality
of the application, its speed, and stable operation.

Software packages and libraries used in the project:
1. Flask: Used to create the web server and handle HTTP

requests and responses.
2. Request: Receives incoming HTTP requests, such as file

uploads and query parameters.
3. Jsonify: Converts Python objects (e.g., dictionaries) into

JSON format responses.

Text_splitter = RecursiveCharacterTextSplitter (
 chunk_size=800, chunk_overlap=80, length_function=len,
is_separator_regex=False
)

PROMT_TEMPLATE = “ “ “
Answer the question based only on the following context:
{context}

Answer the question based on the above context: {question}
“ “ “

53

4. Render_template: Used to render HTML templates so
that they can be displayed in the browser.

5. OS: Manages file paths and directories.
6. Secure_filename: Ensures safe saving of uploaded file

names to avoid invalid characters or vulnerabilities.
7. PyPDFLoader: Used to extract text from PDF files.
8. RecursiveCharacterTextSplitter: Used to split large

documents into manageable text chunks.
9. Document: Represents a text chunk with metadata.
10. Chroma: A vector database used for storing

embeddings and searching.
11. Text-embedding-3-large: Converts text into

numerical vectors used for similarity search.
12. GPT4o: A language model used to generate answers.
13. ChatPromptTemplate: Used to structure the prompt

format for the language model.
The project was developed using the following

technologies: Python 3.10, the primary programming
language used for implementing all modules, and HTML,
CSS and JavaScript, used to create the user interface.
Algorithms and approaches used:
1. Natural Language Processing (NLP): Used for

processing the text within PDF files and the questions
posed by users. With the help of LangChain and OpenAI
models, it is possible to generate answers to questions.

2. Text Embedding: Text is converted into embeddings
(vectors), which allows for comparison of texts and
finding similar parts.

3. Chunking Algorithm: Documents are split into chunks
using RecursiveCharacterTextSplitter (up to 800
characters).

4. Similarity Search: The most relevant texts are found in
the Chroma database based on embeddings.

5. Prompt Engineering: Structured and context-oriented
templates are used for efficient answer generation.

Supporting technologies:
1. HTTP REST API: Provided through Flask to enable data

exchange.
2. JavaScript Fetch API: Enables communication between

forms in the HTML file and the server.
3. CSS: Used for formatting visual elements.
4. JSON: Used as the data format for user questions and

server responses.

In summary, a web application was created through which
users can upload PDF files and receive answers based on the
content of those files. The main page of the website consists
of sections for file upload and question submission.

Application Improvement Opportunities. Although the
existing web application functions smoothly, several
improvements could further enhance its performance and user
experience:
1. Support for Multiple File Types: Currently, the system

only supports PDF files, but it could be extended to
recognize other document types (such as Word or plain
text files) by adding additional file readers.

2. Model Refinement: Given that language models evolve
daily, it will be necessary to adopt newer language models
for the application’s improvement. This will enhance the
quality of responses, especially for specialized documents.

3. Explanation and Optimization: As the volume of data
grows, the application’s processing speed might slow

down, particularly during document processing and
answer generation. Using optimization techniques like
threading and parallelization would make the application
more scalable.

4. User Feedback: To achieve better results, a feedback
mechanism could be integrated where users rate the
answers. This data can be used to further improve the
model.

5. Enhanced Search Functionality: Additional search
features could be added, such as filtering documents by
sections or metadata (e.g., author, date), which would
make it easier for users to find information within large
documents.

IV. CONCLUSION
An application based on NLP technology has been

developed that allows users to quickly receive answers to
questions based on the content of an uploaded PDF file. The
web application uses modern technologies such as Flask,
LangChain, Chroma, and OpenAI models like Text-
embedding-3-large and GPT4o to create a question-answering
system based on PDF documents. It is designed to meet user
demands quickly and accurately, making it versatile and
useful across various fields.

The application is extendable and features high
adaptability, enabling expansion with functionalities such as
multilingual support, support for other file types, and faster
real-time responses.

The resulting application is an example of how language
models can be utilized. This presents an important opportunity
for developers to integrate AI models into their own projects.

This project significantly simplifies the process of
working with documents, allowing users to obtain highly
relevant and context-based answers with minimal effort. The
application helps save time and resources and substantially
eases the process of managing digital documents for users.

ACKNOWLEDGMENT
The work was supported by the Shota Rustaveli National

Science Foundation of Georgia. Grant #SC-24-753.

REFERENCES
[1] A. Rayhan, R. Kinzler, R. Rayhan. “Natural Language Processing:

Transforming How Machines Understand Human Language”,
Conference: The development of Artificial General Intelligence, 2023,
DOI:10.13140/RG.2.2.34900.99200.

[2] D. Jurafsky & J. H. Martin. Speech and Language Processing, Pearson,
614 p., 2025.

[3] B. Min, H. Ross, E. Sulem, et all. “Recent Advances in Natural Language
Processing via Large Pre-Trained Language Models: A Survey”, 2021.

[4] Y. Goldberg, Neural Network Methods for Natural Language
Processing, Springer Cham, 287 p., 2017.

[5] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions”, Commun, ACM,
vol.51, issue 1, pp. 117–122, 2008, DOI: 10.1145/1327452.1327494

[6] Wei-Meng Lee, “Exploring LangChain: A Practical Approach to
Language Models and Retrieval-Augmented Generation (RAG)”,
Published in: CODE Magazine, 2025.

[7] H. Jégou, M. Douze, C. Schmid, “Product Quantization for Nearest
Neighbor Search”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 117-128, Jan. 2011.

[8] Barum Park. “What is Cosine Similarity?”, Department of Sociology,
Cornell University. 2023, CosineSimilarity.pdf.

[9] S. Tsiramua, H. Meladze, T. Davitashvili, D. Bitmalkishev, T. Elpakidze,
“A Q&A system based on AI and NLP models”, XV International
Conference of the Georgian Mathematical Union, Batumi, Georgia, The
Book of Abstracts, p.202, 2025.

54

http://dx.doi.org/10.13140/RG.2.2.34900.99200
https://doi.org/10.1145/1327452.1327494
https://baruuum.github.io/assets/teaching/2021_SocNet/CosineSimilarity.pdf

	I. Introduction
	II. NLP Technologies for q&a
	III. Realization of NLP Technology
	IV. Conclusion
	Acknowledgment
	References

