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Abstract—The paper discusses the application of NLP 
technologies for the Georgian language in a question-answering 
format. In the developed web application, based on pre-uploaded 
PDF files, users can ask questions in Georgian related to 
document content via an NLP system and receive relevant 
answers in text and audio formats. The system analyzes uploaded 
documents, breaks down PDFs into vectors, processes them 
using the cosine similarity algorithm, and generates relevant 
answers. This required integrating several components: 
developing a Flask Web application, enabling PDF processing, 
using embeddings with a database, and creating a question-
answering module. To ensure efficient information processing, 
the LangChain framework, OpenAI’s language models, and 
ChromaDB were used. 

The purpose of developing this NLU (Natural Language 
Understanding) technology was to simplify information retrieval 
from large document volumes and generate fast, accurate, 
context-based responses. The use of NLU technology ensured the 
system's speed, simplicity, flexibility, efficiency, and adaptability 
to various needs and technological requirements. This system 
can be applied in fields where users deal with large textual data, 
including education, business, and research. 

 
Keywords—Artificial intelligence, language processing 

technology, language models, cosine similarity algorithm. 

I. INTRODUCTION  
In today’s information-driven environment, with the 

growing volume of digital documents, the need for intelligent 
systems that process, analyze, and retrieve relevant 
information from these documents is becoming increasingly 
important. Traditional document search methods are often 
labor-intensive and time-consuming, creating a demand for 
more intelligent and interactive solutions. 

The rapid digitization of information in the modern world 
generates massive amounts of data stored in various formats, 
including PDF files. The documents of this format are widely 
used across all areas of human activity where in-depth 
analysis of large volumes of text is required. However, finding 
the desired information within these documents is often labor-
intensive and time-consuming. Traditional search functions in 

PDF programs are limited, as they cannot understand context, 
meaning, or content through simple keyword searches. 

With advancements in artificial intelligence (AI) and 
natural language processing (NLP) technologies, there is a 
growing demand for applications capable of complex text 
analysis. Moreover, in the era of remote work and online 
collaboration, such applications become essential tools for 
improving productivity and access to information. The 
relevance of this work lies in its potential to transform how 
users interact with digital documents - making it faster and 
more efficient to retrieve and process the necessary 
information. 

This paper discusses the development of a technology and 
application that allows uploading, processing, and answering 
user questions based on the content of Georgian-language 
documents in PDF format. The combination of a Retrieval-
Augmented Generation (RAG) system and the GPT-4o model 
opens up new possibilities for more intelligent and faster 
interaction with documents. The application enables users to 
interact with documents dynamically: they can ask questions, 
and the system provides accurate answers in real time - greatly 
enhancing the efficiency of working with large-scale 
documents. 

Based on the project objectives, the following tasks were 
carried out: 
1. PDF File Upload and Vectorization Functionality 

Developed: Users can upload PDF documents into the 
application, which converts them into vectors using the 
Text-embedding-3-large model. 

2. Integration of the RAG System Using the GPT-4o Model: 
The RAG system was integrated, utilizing the GPT-4o 
model to understand information in context and provide 
accurate answers to questions. 

3. Use of the Text-embedding-3-large Model: Integration of 
the Text-embedding-3-large model enabled the system to 
store the corresponding vector data of the text, allowing 
the system to retrieve relevant context in response to user 
queries. 

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_11 51



4. Development of a Flask-based Web Application: A web 
application built with Flask was created, ensuring system 
speed, flexibility, and scalability. 

5. Information Retrieval and Question-Answering 
Mechanism Developed: An interface was developed 
within the application that allows users to ask questions 
based on the document content and receive accurate 
answers quickly. 
Given the relevance of the project and the growing 

demand for similar services, the product we have developed 
can be applied across various fields, including business, the 
legal sector, healthcare, education, online learning, and more. 

II. NLP TECHNOLOGIES FOR Q&A 
Natural Language Processing (NLP) is a combination of 

artificial intelligence, computer science, and linguistics that 
processes human language in a way that is understandable to 
computers. As AI-powered devices and services become 
increasingly integrated into our daily lives, the influence of 
NLP continues to grow, enabling seamless interaction 
between humans and technology [1]. 

NLP involves various techniques for analyzing human 
language. Some of the most common techniques encountered 
in this field include: 
1. Sentiment Analysis: An NLP technique that analyzes text 

to determine sentiment, such as “positive”, “negative”, or 
“neutral”. Sentiment analysis is widely used in business to 
better understand customer feedback. 

2. Summarization: An NLP technique that summarizes 
longer texts to make them more accessible for time-
constrained readers. These typically include reports and 
articles. 

3. Keyword Extraction: An NLP technique that analyzes text 
to identify the most important keywords or phrases. 
Keyword extraction is used for search engine optimization 
(SEO), social media monitoring, and business research. 

4. Tokenization: The process of breaking text into "tokens" - 
words, symbols, or subwords - that a program can analyze. 
Tokenization is widely used in NLP tasks such as word 
modeling, building lexicons, and identifying frequently 
occurring words [2, 3]. 
While NLP can be applied in a wide range of applications, 

the technology is still far from perfect. In fact, many NLP 
tools struggle to accurately interpret sarcasm, emotion, slang, 
context, errors, and other forms of ambiguous expression. 
This means NLP remains somewhat limited.  

Retrieval-Augmented Generation (RAG) System, GPT 
4o and Text-Embedding-3-Large Model. With the 
development of Large Language Models (LLMs), the NLP 
field has undergone a transformative shift, enabling 
significant improvements in language understanding, 
generation, and contextual applications. However, managing 
and searching high-dimensional vector embeddings remains a 
major challenge in building scalable systems based on LLMs. 
ChromaDB, a vector database, and LangChain, a framework 
for building complex LLM-based applications, represent key 
innovations in this domain. In the following sections, we will 
explore the integration of ChromaDB and LangChain, aimed 
at creating efficient and scalable architectures for real-world 
applications such as document retrieval, conversational 
agents, and personalized recommendation systems. This 

combination reduces complexity, improves response speed 
for question answering, and optimizes the scalable use of 
LLM applications [4]. 

Nonetheless, scaling these models and using them 
efficiently in real-world operations presents significant 
challenges. The embeddings generated by these models 
require efficient storage and search mechanisms, especially 
for tasks such as semantic search or personalized content 
delivery. Traditional databases, optimized for structured data, 
struggle with processing high-dimensional vector data, which 
calls for specialized solutions for embedding management, 
indexing, and retrieval. 

The use of LLMs in modern NLP applications has led to 
the generation of high-dimensional embeddings that encode 
linguistic information. These embeddings are typically used 
in tasks such as document retrieval, text classification, and 
named entity recognition. They allow for a more nuanced 
understanding of semantic similarity than traditional 
keyword-based approaches. 

However, as the size of these models and their associated 
datasets grows, managing and retrieving embeddings 
becomes increasingly complex. Techniques like exact nearest 
neighbor search become impractical for real-time use when 
dealing with high-dimensional data. To mitigate these 
challenges, indexing and approximate search methods have 
been proposed, including Locality-Sensitive Hashing (LSH) 
and k-d trees [5]. 

Vector databases are optimized for storing and retrieving 
high-dimensional embeddings. Unlike traditional databases, 
which are designed for structured data, vector databases are 
built to handle dense vectors generated by machine learning 
models. Tools like FAISS (Facebook AI Similarity Search), 
Pinecone, and Milvus have been developed to meet this need. 

Chroma DB stands out by offering specialized support for 
real-time applications, focusing on scalability, real-time 
embedding storage, and fast similarity search. Its optimized 
indexing structures assist dynamic LLM applications, where 
embeddings are frequently generated and queried in real time. 

LangChain simplifies the development of LLM-based 
applications by providing an abstraction layer for creating 
dynamic pipelines. It enables developers to build modular 
chains that connect LLMs with external tools such as 
databases, APIs, and memory components. LangChain 
facilitates dynamic querying, memory retention, and 
interaction with embeddings, offering flexibility for solving 
complex NLP tasks [6]. 

Unlike other frameworks, such as Hugging Face 
Transformers, which primarily focus on model inference, 
LangChain integrates LLMs into broader workflows that 
require continuous interaction with data sources, memory 
management, and query optimization. This makes it ideal for 
building applications where context retention and real-time 
interaction are critical, such as virtual assistants, chatbots, and 
recommendation engines. 

Integrating vector databases into NLP pipelines presents 
challenges. Managing large volumes of high-dimensional 
embeddings is complex, and retrieving embeddings 
effectively in real time requires optimized indexing strategies. 
The use of Approximate Nearest Neighbor (ANN) search 
techniques improves retrieval speed, but often results in trade-
offs with accuracy, requiring careful balancing between 
precision and performance. 
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Additionally, embedding management in LLM 
applications must account for dynamic updates, as 
embeddings may evolve over time based on user interactions 
or incoming data. This requires databases capable of handling 
frequent writes and updates while maintaining low-latency 
querying performance. 

Euclidean distance measures absolute difference in 
coordinates and is sensitive to magnitude/scale [7]. 

Cosine similarity measures directional alignment (the 
angle); it is invariant to uniform rescaling of the vectors —
useful when only orientation matters (e.g., text embeddings, 
high-dimensional sparse data) [8].  

III. REALIZATION OF NLP TECHNOLOGY 
A web application based on NLP technology is capable of 

learning from uploaded PDF files and answering user 
questions based on the content of the document [9]. 
The project consists of several components: 
1. The main Flask application file, where the functionality 

for text processing and question answering is defined 
using the Flask framework. Additionally, the application's 
routing is configured here. 

2. An HTML file, which defines the structure of the web 
application and, using JavaScript, implements the 
functionality for uploading PDF files and submitting 
questions. 

3. A CSS file, which provides the visual styling of the web 
application. 

4. The Upload folder, where PDF files uploaded by users are 
stored. 

5. The Chroma folder, where information obtained from text 
processing is stored. 
Discussion of the Flask application file. The core logic 

of the project handles text processing and answering user 
questions. For this purpose, we use the Text-Embedding-3-
large and GPT-4o models for natural language processing, 
along with the Chroma DB vector database. 

After uploading the PDF file, the text contained within it 
is processed. First, the text is divided into sections – chunks - 
using a text splitter. Although it's possible to split the text into 
individual sentences, this type of segmentation complicates 
the process of retrieving accurate answers to user queries. In 
this case, the text is divided into sections of 800 characters 
(see Fig. 1). However, such segmentation may cause a section 
to end in the middle of a sentence, potentially leading to a loss 
of context. To avoid this, overlaps are used - specifically, an 
80-character overlap. This means that after one chunk ends, 
the next chunk starts 80 characters before the end of the 
previous one. Finally, the resulting chunks are stored in 
Chroma DB. 

 

 
Fig. 1. Text Segmentation 

 
After the text is divided into chunks, the processing phase 

begins. Using a natural language processing model, 
specifically Text-Embedding-3-Large, the text contained in 
the chunks is converted into vectors. These vectors are then 

stored in the vector database, Chroma DB, alongside their 
corresponding chunks. 

The same process applies to the user's question. The 
question is processed using the Text-Embedding-3-Large 
model and converted into vector data. 

After completing the above processes, the question 
answering phase begins.  

The cosine similarity is calculated between the vector of 
the user's question and the vectors stored in Chroma DB. This 
process works as follows: 
Cosine Similarity measures the angle between two vectors in 
a multidimensional space and evaluates their semantic 
similarity. It is defined as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐵𝐵) =
𝐴𝐴 ⋅ 𝐵𝐵

∥ 𝐴𝐴 ∥⋅∥ 𝐵𝐵 ∥
,∈ [−1,1] 

where: 
• A⋅B is the dot product of the two vectors, 
• ∥A∥ and ∥B∥ are the magnitudes (lengths) of vectors A 

and B. 
The smaller the angle between the vectors, the closer the 

corresponding text vector is to the answer. Based on the 
ascending order of cosine similarity values, the system 
retrieves the five vectors with the smallest angles from the 
database. The texts corresponding to these vectors are then 
processed by the AI model, GPT 4o. GPT 4o summarizes the 
provided texts and returns a response according to the defined 
task (Prompt) (see Fig. 2). 

 

 
Fig.2. Prompt 

 
Three routes are defined in the application: 
1. Main route, which represents the main page of the 

application, where users can upload PDFs and ask 
questions. It uses the HTML file. 

2. Upload route (/upload). This route accepts only POST 
requests and is used for uploading files. It checks whether 
a file has been uploaded. After processing the PDF, it 
returns a message confirming the file was successfully 
uploaded and divided into a specific number of chunks. 

3. Query route (/query). This route accepts the user's question 
in JSON format, processes it, and returns an answer from 
GPT4o. The received answer is then sent back to the user. 

Methods. For creating a web application, it is important to 
use the necessary software packages, algorithms, and 
technologies. The technologies we select influence the quality 
of the application, its speed, and stable operation. 

Software packages and libraries used in the project: 
1. Flask: Used to create the web server and handle HTTP 

requests and responses. 
2. Request: Receives incoming HTTP requests, such as file 

uploads and query parameters. 
3. Jsonify: Converts Python objects (e.g., dictionaries) into 

JSON format responses. 

Text_splitter = RecursiveCharacterTextSplitter ( 
    chunk_size=800, chunk_overlap=80, length_function=len, 
is_separator_regex=False 
) 

PROMT_TEMPLATE = “ “ “ 
Answer the question based only on the following context: 
{context} 
--- 
Answer the question based on the above context: {question} 
“ “ “ 
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4. Render_template: Used to render HTML templates so 
that they can be displayed in the browser. 

5. OS: Manages file paths and directories. 
6. Secure_filename: Ensures safe saving of uploaded file 

names to avoid invalid characters or vulnerabilities. 
7. PyPDFLoader: Used to extract text from PDF files. 
8. RecursiveCharacterTextSplitter: Used to split large 

documents into manageable text chunks. 
9. Document: Represents a text chunk with metadata. 
10. Chroma: A vector database used for storing 

embeddings and searching. 
11. Text-embedding-3-large: Converts text into 

numerical vectors used for similarity search. 
12. GPT4o: A language model used to generate answers. 
13. ChatPromptTemplate: Used to structure the prompt 

format for the language model. 
The project was developed using the following 

technologies: Python 3.10, the primary programming 
language used for implementing all modules, and HTML, 
CSS and JavaScript, used to create the user interface. 
Algorithms and approaches used: 
1. Natural Language Processing (NLP): Used for 

processing the text within PDF files and the questions 
posed by users. With the help of LangChain and OpenAI 
models, it is possible to generate answers to questions. 

2. Text Embedding: Text is converted into embeddings 
(vectors), which allows for comparison of texts and 
finding similar parts. 

3. Chunking Algorithm: Documents are split into chunks 
using RecursiveCharacterTextSplitter (up to 800 
characters). 

4. Similarity Search: The most relevant texts are found in 
the Chroma database based on embeddings. 

5. Prompt Engineering: Structured and context-oriented 
templates are used for efficient answer generation. 

Supporting technologies: 
1. HTTP REST API: Provided through Flask to enable data 

exchange. 
2. JavaScript Fetch API: Enables communication between 

forms in the HTML file and the server. 
3. CSS: Used for formatting visual elements. 
4. JSON: Used as the data format for user questions and 

server responses. 

In summary, a web application was created through which 
users can upload PDF files and receive answers based on the 
content of those files. The main page of the website consists 
of sections for file upload and question submission. 

Application Improvement Opportunities. Although the 
existing web application functions smoothly, several 
improvements could further enhance its performance and user 
experience: 
1. Support for Multiple File Types: Currently, the system 

only supports PDF files, but it could be extended to 
recognize other document types (such as Word or plain 
text files) by adding additional file readers. 

2. Model Refinement: Given that language models evolve 
daily, it will be necessary to adopt newer language models 
for the application’s improvement. This will enhance the 
quality of responses, especially for specialized documents. 

3. Explanation and Optimization: As the volume of data 
grows, the application’s processing speed might slow 

down, particularly during document processing and 
answer generation. Using optimization techniques like 
threading and parallelization would make the application 
more scalable. 

4. User Feedback: To achieve better results, a feedback 
mechanism could be integrated where users rate the 
answers. This data can be used to further improve the 
model. 

5. Enhanced Search Functionality: Additional search 
features could be added, such as filtering documents by 
sections or metadata (e.g., author, date), which would 
make it easier for users to find information within large 
documents. 

IV. CONCLUSION 
An application based on NLP technology has been 

developed that allows users to quickly receive answers to 
questions based on the content of an uploaded PDF file. The 
web application uses modern technologies such as Flask, 
LangChain, Chroma, and OpenAI models like Text-
embedding-3-large and GPT4o to create a question-answering 
system based on PDF documents. It is designed to meet user 
demands quickly and accurately, making it versatile and 
useful across various fields. 

The application is extendable and features high 
adaptability, enabling expansion with functionalities such as 
multilingual support, support for other file types, and faster 
real-time responses. 

The resulting application is an example of how language 
models can be utilized. This presents an important opportunity 
for developers to integrate AI models into their own projects. 

This project significantly simplifies the process of 
working with documents, allowing users to obtain highly 
relevant and context-based answers with minimal effort. The 
application helps save time and resources and substantially 
eases the process of managing digital documents for users. 
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