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Abstract—A new quantified refutation proof system is 
introduced such that every quantified many-valued 
unsatisfiable formula for each version of MVL can be 
refuted in the described system. This proof system is based 
on the splitting method of variables. It is “weak” system 
with a “simple” proof construction strategy. However the 
preference for such systems lies in the possibility of proof 
simplification by choosing the order of splinted variables. 
It is also shown that the variant of this system for two-
valued quantified formulas is much better by proof 
complexities of some formula classes than any quantified 
resolution systems.  
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I. INTRODUCTION 
It is known that many-valued logic (MVL) was created 

and developed in 1920 by Łukasiewicz [1], who introduced 
the basic idea of additional truth degrees. In the earlier years 
of development, this caused some doubts about the usefulness 
of MVL. In the meantime, many interesting applications of 
MVL were found in such fields as Logic, Mathematics, 
Formal Verification, Artificial Intelligence, Operations 
Research, Computational Biology, Cryptography, Data 
Mining, Machine Learning, Hardware Design, Computational 
Biology and Medical Diagnosis. etc., therefore, the 
investigations in the area of MVL are very actual. The main 
theoretical results concern several properties of formal 
systems, which can present different variants of MVL and, in 
particular, issues on тhe logical completeness of defined 
systems. Three universal proof systems for all versions of 
propositional MVL were given in [2,3], where some 
questions, referring to the proof complexities of MVL-
tautologies, are investigated as well. 

While traditionally the complexity of proofs for 
propositional tautologies has been at the centre of research, 
the past two decades have witnessed a surge in proof 
complexity of quantified Boolean formulas (QBFs), which 
give not only a new class of tautologies, but also some 
quantifier-free tautologies can be proved simpler in any 
quantified system. Some interesting survey of proof 
complexity for QBFs is given in [4], where the complexities 

for some families of unsatisfiable QBFs are compared in 
different quantified propositional refutation proof systems. 

The current research refers to the problem of constructing 
a modification of a universal proof system, based on the 
splitting method of variables, in which every unsatisfiable 
quantified many-valued formula for each version of MVL can 
be refuted in the described system.  

The main notions and notations of some versions of MVL 
of the splitting method and of proof complexity measures are 
given in Preliminaries. Then the quantified many-valued 
formula (QMVF), the Quantified Refutation Universal 
System for Many-Valued Logic are described, and finally it is 
proved that a particular variant of this system for two-valued 
quantified formulas is much better by the proof complexities 
of some unsatisfiable formula classes than any quantified 
resolution system.  
 

II. PRELIMINARIES 
 
2.1. Main notions of k-valued logic 

Let Ek be the set �0, 1
k−1

, … , k−2
k−1

, 1�.We use the well-
known notions of propositional formula, which is defined as 
usual from k-valued propositional variables with values from 
Ek  and logical connectives & , ∨ , ⊃ , ¬ , defined by 
different mode (see, for example, [4]):  
(1) 𝒑𝒑 ∨ 𝒒𝒒 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝, 𝑞𝑞)            or                    
(2) 𝒑𝒑 ∨ 𝒒𝒒 = min(p + q, 1), 
(1) 𝒑𝒑&𝑞𝑞 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑝𝑝, 𝑞𝑞)               or                     
(2) 𝒑𝒑&𝑞𝑞 = max(𝒑𝒑 + 𝑞𝑞 −1, 0) 

(1) p ⊃ 𝒒𝒒 = �1,                  𝑓𝑓𝑓𝑓𝑓𝑓  𝑝𝑝 ≤ 𝑞𝑞
1 − 𝑝𝑝 + 𝑞𝑞,   𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝 > 𝑞𝑞     or   

(2) p ⊃ 𝒒𝒒 = �1,         𝑓𝑓𝑓𝑓𝑓𝑓  𝑝𝑝 ≤ 𝑞𝑞
𝑞𝑞,         𝑓𝑓𝑓𝑓𝑓𝑓  𝑝𝑝 > 𝑞𝑞  

And for negation, two versions as well: 
(𝟏𝟏) ¬𝒑𝒑 = 1 − 𝑝𝑝 or  
(2) by permuting the truth values cyclically ¬𝒑𝒑 = (((𝑘𝑘 −
1)𝑝𝑝 + 1)𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)/(𝑘𝑘 − 1). 

For propositional variable p and 𝛅𝛅= 𝑖𝑖
k−1

   (0 ≤ i ≤k-1 ) we 
define additionally two modes of exponential function p𝛔𝛔: 
(1) p𝛅𝛅 = (𝑝𝑝 ⊃ δ)& (δ ⊃ 𝑝𝑝) with (1) implication and  
(2) p𝛅𝛅 as p with (k-1)(1– δ ) (2) negations, 
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and introduce the additional notion of formula:  for every 
formulas A and B the expression 𝑨𝑨𝑩𝑩 (for both modes) is also 
a formula. 

For every propositional variable 𝑝𝑝 and 𝛅𝛅= 𝑖𝑖
k−1

   (0 ≤ i ≤k-
1) in k-valued logic p𝛔𝛔 in the sense of both exponent modes 
are the literals.  

In the considered logics, either only 1 or all values 
1/2≤𝒊𝒊/𝐤𝐤−𝟏𝟏≤ 1 can be fixed as designated values, so a formula 
φ with variables p1,p2,…pn  is called 1-k-tautology or  ≥1/2-k-
tautology if for every 𝛿𝛿 = (𝛿𝛿1,𝛿𝛿2, … ,𝛿𝛿𝑛𝑛) ∈ 𝐸𝐸𝑘𝑘𝑛𝑛 assigning 𝛿𝛿 j 
(1≤j≤n) to each pj gives the value 1 or   𝑖𝑖

k−1
   of φ.  

 
2.2. Replacement rule and auxiliary relations for 

replacement  
Replacement rules are each of the following trivial 

identities for a propositional formula 𝝍𝝍: 
for both variants of conjunction and both variants of 
disjunction 
𝜑𝜑&0 = 0&𝜑𝜑 = 0, 𝜑𝜑⋁0 = 0⋁𝜑𝜑 = 𝜑𝜑, 
𝜑𝜑&1 = 1&𝜑𝜑 = 𝜑𝜑, 𝜑𝜑 ∨ 1 = 1 ∨ 𝜑𝜑 = 1, 
for (1) implication 𝜑𝜑 ⊃ 0 = ¬ 𝜑𝜑 with (1) negation,  
0 ⊃ 𝜑𝜑 = 1, 𝜑𝜑 ⊃ 1 = 1, 1 ⊃ 𝜑𝜑 = 𝜑𝜑, 
for (2) implication 1⊃ 𝜑𝜑 = 𝜑𝜑, 𝜑𝜑 ⊃ 1 = 1,                            
0 ⊃ 𝜑𝜑 = 1, 𝜑𝜑 ⊃ 0 =¬ 𝑠𝑠g(value of 𝜑𝜑),  
for (1) negation ¬( 𝑖𝑖

k−1
 )=1 −  𝑖𝑖

k−1
   (0≤i≤k-1), 

for (2) negation ¬( 𝑖𝑖
k−1

)= 𝑖𝑖+1
k−1

   (0≤i≤k-2), ¬𝟏𝟏 = 𝟎𝟎,  
(𝝍𝝍 with k negations) = 𝝍𝝍. 

Application of a replacement rule to a word consists of 
replacing its subwords, having the form of the left-hand side 
of one of the above identities, by the corresponding right-hand 
side. 

In [2], the following auxiliary relations for replacements 
are introduced as well: 
for both variants of the conjunction 
𝜑𝜑& 𝑖𝑖

k−1
= 𝑖𝑖
k−1

&𝜑𝜑 ≤ 𝑖𝑖
k−1

    (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 – 2) , 
for both variants of disjunction  
𝜑𝜑⋁ 𝑖𝑖

k−1
= 𝑖𝑖
k−1

⋁𝜑𝜑 ≥ value of 𝜑𝜑   (0 ≤ 𝑖𝑖 ≤ 𝑘𝑘 – 2), 
for (1) implication  
𝜑𝜑 ⊃ 𝑖𝑖

k−1
≥ 𝑖𝑖
k−1

  and  𝑖𝑖
k−1

⊃ 𝜑𝜑 ≥𝑘𝑘−𝑖𝑖+1
k−1

 (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 –2) , 
for (2) implication  
𝜑𝜑 ⊃ 𝑖𝑖

k−1
≥ 𝑖𝑖
k−1

   (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 −2) and 

 𝑖𝑖
k−1

 ⊃𝜑𝜑≥ value of 𝜑𝜑  (1≤𝑖𝑖≤𝑘𝑘−1). 
 
2.3. Splitting tree 

Let 𝜑𝜑 be a propositional formula of k-valued logic with 
variables 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛 . 

The splitting method was described at first in [5] for each 
formula of two-valued classical logic, and was generalized for 
the formulas of MVL in [3]. 

Let φ be some propositional formula of k-valued logic and 
p be one of its variables. Results of the splitting method of the 
formula φ by the variable p (splinted variable) are the 
formulas φ[p𝛅𝛅] for every 𝛅𝛅 from the set �0, 1

k−1
, … , k−2

k−1
, 1� , 

which are obtained from φ by assigning 𝛅𝛅 to each occurrence 
of p and successively using replacement rules and, if, it is 
necessary, the auxiliary relations for replacement as well. 

Note that, in some cases, the formulas φ[p𝛅𝛅]can remain after 
pointed transformation occurrences of the constant 𝛅𝛅 as well. 

The generalization of the splitting method allows us to 
associate with every formula φ of some tree with a root, the 
nodes of which are labeled by formulas and edges, labeled by 
literals. The root is labeled by its formula φ. If some node is 
labeled by the formula v and α is one of its variables, then all 
the k edges, which go out from this node, are labeled by one 
of literals α𝛅𝛅 for every 𝛅𝛅 from the set �0, 1

k−1
, … , k−2

k−1
, 1�,  and 

each of k “sons” of this node is labeled by the corresponding 
formula v[α𝛅𝛅 ]. Each of the tree’s leaves is labeled with some 
constant from the set �0, 1

k−1
, … , k−2

k−1
, 1�. The tree, which is 

constructed for the formula φ by the described method, we 
will call splitting tree (s.t.) of φ in the future. It is obvious that 
by changing the order of splinted variables in the given 
formula φ, we can obtain different splitting trees of φ. 

The universal proof system for MVL, based on the 
splitting method (UGSS in the future), can be defined as 
follows: for every formula φ, some s.t. must be constructed, 
and if all the tree’s leaves are labeled by the value 1 (or by 
some value 𝑖𝑖

k−1
≥1/2), then the formula φ is 1-k-tautology 

(≥1/2-k-tautology). It is obvious that the system UGSS is 
complete and sound.  
 
2.4. Proof complexities 

By | 𝜑𝜑| we denote the size of a formula 𝜑𝜑, defined as the 
number of all logical signs in it. It is obvious that the full size 
of a formula, which is understood to be the number of all 
symbols is bounded by some linear function in |𝜑𝜑 |. 

The t-complexity (l-complexity) of s.t. is the number (the 
sum of sizes) of different formulas, with which its nodes are 
labeled. The t-complexity (l-complexity) of the UGSS proof 
for MVL-tautology φ is the value of the minimal t-
complexity (l-complexity) of its splitting trees. 
 

III. MAIN RESULTS 
The notion of the quantified many-valued formula is 

described, and a new quantified refutation proof system is 
introduced here, such that every quantified many-valued 
unsatisfiable formula for each version of MVL can be refuted 
in the described system. It is also shown that the variant of this 
system for two-valued quantified formulas is much better by 
proof complexities of some unsatisfiable formula classes than 
any quantified resolution systems.  
 
3.1. Quantified many-valued formula 

A QMVF is a propositional formula of MVL augmented 
with k-valued quantifiers ∀, ∃ that range over the  values  
�0, 1

k−1
, … , k−2

k−1
, 1�. In the standardized QMVFs investigated 

in computer science, all quantifiers appear outermost in a 
prefix (quantifier) and are followed by a propositional 
formula, called a matrix. The variables following after the 
quantifier ∀ are called universal variables and the variables, 
following after quantifier ∃ are called existential variables. 

The quantified universal proof system for MVL, based on 
the splitting method (QUGSS), works as follows: for any 
QMVF formula φ we use the system UGSS to matrix of φ. 
S.t. for every QMVF tautology φ  the following must hold: if 
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for any step the splinted variable α is the universal variable of 
φ, then all k subtrees stuffed from the α𝛅𝛅 labeled edges for 
every 𝛅𝛅 from the set �0, 1

k−1
, … , k−2

k−1
, 1�   must have some 

branch ending in one of the designated values of labeled 
leaves; if for any step the splinted variable α is existential 
variable of φ, then at least one of subtrees stuffed from the α𝛅𝛅 
labeled edges must have some branch ending in one of 
designated values of the labeled leaves. 
 
 3.2. The quantified refutation proof system for MVL 

It seems, that refutation splitting proof system can be 
useless, because we can use the system QUGSS to negate of 
the given QMVF. However, there are two form of negation in 
the MVL, and one of them may create some difficulties.   The 
quantified refutation universal proof system for MVL, based 
on the generalized splitting method (QRUGSS), works as 
follows: for any QMVF formula φ, we use the system UGSS 
to the matrix of φ. S.t. for every unsatisfiable QMVF φ must 
be as follows: if for any step the splinted variable α is the 
universal variable of φ, then at least one of  k subtrees stuffed 
from the α𝛅𝛅 labeled edges for every 𝛅𝛅 from the set 
�0, 1

k−1
, … , k−2

k−1
, 1�  must have some branch ending in one of 

not designated values of the labeled leaves; if for any step the 
splinted variable α is the existential variable of φ, then all k 
subtrees stuffed from the α𝛅𝛅 labeled edges must have some 
branch ending in one of not designated values of the labeled 
leaves.  

 
3.3. Some result of QRUGSS application 

Three families of unsatisfiable QBF are given in [6]: 
a) equality families of QBFs 

𝐒𝐒𝐒𝐒𝐧𝐧 = ∃𝐱𝐱𝟏𝟏 … 𝐱𝐱𝐧𝐧∀𝐮𝐮𝟏𝟏 … 𝐮𝐮𝐧𝐧∃𝐭𝐭𝟏𝟏 … 𝐭𝐭𝐧𝐧  
(& (𝐱𝐱𝐢𝐢 ↔ 𝐮𝐮𝐢𝐢) ⊃ t̅i) & (⋁ 𝐭𝐭𝐢𝐢), 
𝟏𝟏≤𝐢𝐢≤𝐧𝐧                         𝟏𝟏≤𝐢𝐢≤𝐧𝐧 

b) QParityn =∃x1 · · · xn ∀u ∃t1 · · · tn 
                                    

(x1 ↔ t1 ) && ((ti−1 ⊕ xi ) ↔ ti ) & (u ↔ tn) 
                2≤𝐢𝐢≤𝐧𝐧 

c)  KBKF𝒏𝒏 =∃x1y1∀u1 · · ·   ∃xnyn∀un ∃z1 · · ·  zn, 
 (¬ x1 ∨ ¬y1)  
 (xi ∨ ui ∨ ¬ xi+1 ∨ ¬ yi+1), 1≤i≤n-1, 
 (yi ∨¬ ui  ∨¬ xi+1 ∨ ¬ yi+1), 1≤i≤n-1, 
 (xn ∨ un ∨ ¬ z1 ∨ ··· ∨¬  zn), 
 (yn ∨  ¬ un  ∨¬ z1 ∨ ··· ∨¬ zn), 
 (ui ∨ zi), 1≤i≤n, 
 (¬ui∨ zi), 1≤i≤n 

 
As it is mentioned in [6], all the above formulas are 

exponentially hard for quantified system QU-Resolution (i.e., 
they require proofs of exponential size). 

The following statement is proved. 
Theorem: If φn are formulas 𝐒𝐒𝐒𝐒n , QParityn or KBKFn, 
then in the system QUGSS for two-valued formulas 
t(φn)= 𝜃𝜃(n) and l(φn)= 𝜃𝜃 (n2). 
Proof sketch: 

a) If for all n φn is 𝐒𝐒𝐒𝐒n, then we can choose for the 
splinted variables such sequence, which allows us to 
construct for φn some s.t. T(φn) with the following 
complexities  
t(T(φ1))=6 and t(T(φn)) = t(T(φn-1))+4.    

b) If for all n φn is QParityn, then we can choose for the 
splinted variables such sequence, which allows us to 
construct for φn some s.t. T(φn) with the following 
complexities  
t(T(φ1))=7,  
t(T(φn)) = t(T(φn-1[u0]))+t(T(φn-1[ui]))+8  
and ∀ 2≤i≤n-1 
t(T(φi[u0]))+t(T(φi[ui]))= 
t(T(φi-1[u0]))+t(T(φi-1[ui]))+8.   

c) If for all n φn is KBKFn, then we can choose for the 
splinted variables such sequence, which allows us to 
construct for φn some s.t. T(φn) with the complexity 
t(T(φn)) ≤11(n-2)+9. 

 
Take into consideration that the longest formula of proof 

is the matrix of the formula φn with size c1n for some constant 
c1 and the longest branch in any s.t. of the matrix of the 
formula φn   must have c2n nodes for some constant c2 , we 
obtain the upper and lower bounds for t(φn) and l(φn). 

As the introduced system has a simple strategy for 
constructing proofs, besides its mathematical significance, it 
can have practical applications in many areas. 

REFERENCES 
[1] J. Lukasiewicz, “O Logice Trojwartosciowej”, Ruch filoseficzny 

(Lwow), vol. 5, pp. 169-171, 1920. 
[2] An. Chubaryan, A. Khamisyan, “Two types of universal proof systems 

for all variants of manyvalued logics and some properties of them”, 
Iran Journal of Computer Science, Springer Verlag, vol.2, pp.1-8, 
2019. https://doi.org/10.1007/s42044-018-0015-4. 

[3] An. Chubaryan, “Universal system for many-valued logic, based on 
splitting method, and some of its properties”, IJISSET, vol. 5, no. 5, 
pp. 52-55, 2019. www.ijisset.org/articles/2019-2/volume-5-issue-5/. 

[4] Siegfried Gottwald, Many Valued Logic, Preprint submitted to 
Elsevier Science 8 May 2005. 

[5] An. Chubaryan and Arm. Chubaryan, “Bounds of some proof 
complexity characteristics in the system of splitting generalization”, 
(in Russian), Otechestv. Nauka w epokhu izmenenij, vol. 10, no. 2(7), 
pp. 11-14, 2015. 

[6] O. Beyersdorff, Proof Complexity of Quantified Boolean Logic - A 
Survey, World Scientific Publishing Company, Chapter 15, 2023. 

19

https://doi.org/10.1007/s42044-018-0015-4
http://www.ijisset.org/articles/2019-2/volume-%20%20%20%20%20%20%20%20%20%205-issue-5/

	I. Introduction
	II. Preliminaries
	III. Main Results
	References


