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Abstract—The paper studies the problem of optimizing 

hyperparameters of machine learning models, which have a 

significant impact on the quality of the model and its 

performance. To solve the problem, a genetic algorithm (GA) 

was developed and applied to optimize the hyperparameters of 

various models. The MLPClassifier and RandomForest 

Classifier models were trained and tested on the MNIST 

dataset, and the RandomForestRegressor model was trained 

and tested on the California Housing dataset. The optimization 

results were compared with the results of traditional Random 

Search and Grid Search methods, demonstrating the 

effectiveness of the genetic algorithm in terms of both 

computational resources and the quality of the resulting 

models. 
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I. INTRODUCTION  

Currently, with the development of data science and 

machine learning (ML), the need to increase the efficiency of 

models has grown. The performance of machine learning 

models depends significantly not only on the quality of the 

data, but also on the correct choice of hyperparameters for 

the models. Manually tuning hyperparameters can be time-

consuming, require deep expertise, and often do not provide 

the best possible results [1,2,3,6]. In this regard, the 

development of automated optimization methods is 

important. 

 Many solutions have been proposed to address the 

problem of hyperparameter optimization (HPO) in machine 

learning models. 

A method, Hyperband, based on the Bandit algorithm, is 

developed that focuses on speeding up random search 

through adaptive resource allocation and early stopping. This 

method has been shown to provide speedups of more than an 

order of magnitude for various deep learning and kernel-

based models [7]. 

The advantages of the bandit-based HPO method and 

evolutionary search approach are combined to achieve high 

performance for different ML models [8]. 

A method is proposed that outperforms both Bayesian 

optimization and bandit-based methods on a wide range of 

problems, such as support vector machines, feed-forward 

neural networks, Bayesian neural networks, deep 

reinforcement learning, and convolutional neural networks 

[9]. 

An evolutionary approach based on genetic algorithms  

was also used. The NSGA-II algorithm provides a much 

better distribution of solutions and better convergence near 

the true Pareto-optimal front [10]. 

Genetic algorithms (GAs), inspired by the principles of 

biological evolution, represent an effective method for 

solving optimization problems, in particular, for finding 

optimal values for hyperparameters in machine learning 

models. The main advantage of GA is that it can avoid 

stopping at local optima and, by efficiently exploring the 

search domain, produce sufficiently acceptable solutions [11-

13]. 

The paper presents the development and application of 

GA to the problem of optimizing hyperparameters of 

machine learning models. A software system has been 

developed, experiments have been conducted, and the results 

have been analyzed to demonstrate the applicability of GA in 

such problems. The optimization results were compared with 

the results of traditional Random Search and Grid Search 

methods. 

II. HYPERPARAMETERS OF MACHINE LEARNING MODELS AND 

THEIR IMPACT ON MODEL QUALITY 

Machine learning models typically have two types of 

parameters: trainable parameters, which are changing during 

the model’s training on data, and hyperparameters, that are 

defined before training and directly affect the model 

structure, training process, and final quality of the model [1-

4]. 

The correct choice of hyperparameters is of great 

importance. It can significantly change the learning speed of 

the model, eliminate possible overfitting or underfitting, and 

affect the generalization ability of the model. Examples of 

hyperparameters are the learning rate of the model, the 

structure of the neural network (number of hidden layers, 

number of neurons in each hidden layer), the number of trees 

in the decision forest, and the regularization coefficients [2-

6]. 

Hyperparameter tuning is most often done manually, 

through experimentation, search methods, or the use of 
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optimization algorithms. These methods include Grid 

Search, which provides the consideration of all possible 

combinations of values defined in the search domain, 

Random Search, which supposes random selection of value 

combinations in the search domain, and Heuristic methods, 

which include GAs, particle swarm optimization (PSO), 

simulated annealing (SA), and other evolutionary methods 

[11-16]. Heuristic methods are mostly used in cases when 

the search domain is very large and optimal solutions are 

difficult to find with traditional methods due to nonlinear 

relationships or complex parameter interactions [17-19]. 

 

III. APPLICATION OF GENETIC ALGORITHMS IN MACHINE 

LEARNING MODELS 

Genetic algorithms find application in various machine 

learning problems, where efficient and automated selection 

of model parameters or design of model structure is required. 

We consider three machine learning models: 

MLPClassifier, RandomForestClassifier, and RandomForest 

Regressor, and a GA was used to determine the optimal 

values of their hyperparameters [1].  

The chromosome encodes the vector of model 

hyperparameters. The fitness function is constructed based 

on the model quality assessment metrics [1,3-5,12]. Genetic 

operations are defined as follows [13,14]. 

Crossover. Each gene is chosen randomly from one of 

the parents. 

Mutation. A random change occurs within an individual. 

By changing the value of a random gene, mutation ensures 

the introduction of novelty and avoids premature 

convergence to suboptimal solutions.  

Tournament Selection. The best ones are selected from 

the population. 

For the MLPClassifier model, we consider the following 

hyperparameters: hidden layers’_size of network, activation 

function, L2 regularization coefficient, initial learning rate, 

and  training batch size. 

The GA for the MLPClassifier model was run with the 

following parameters: population size - 16, number of 

generations - 10, mutation rate - 0.3, tournament size - 3, 

early stopping criterion - 5, if there is no improvement. 

Fitness was assessed based on the average value of the three-

dimensional cross-validation accuracy [1, 11, 12]. 

The list of considered hyperparameters of the 

RandomForestClassifier model is the following: number of 

trees, maximum depth of trees, minimum number of samples 

for branching, minimum number of samples per leaf, and 

bootstrap. 

For this model, the GA was run two times with the 

following parameters: population size - 10, 16, number of 

generations - 16, 16; mutation rate - 0.3, 0.3; tournament size 

- 3, 3; early stopping criterion - 5, 5, if there is no 

improvement. The fitness of the chromosomes was assessed 

based on the average accuracy value of three-dimensional 

cross-validation. The model was trained on 10,000 data 

points. 

The list of the considered hyperparameters of the 

RandomForestRegressor model is the same as for the 

RandomForestClassifier model. 

The GA for the RandomForestRegressor model was run 

with the following parameters: population size - 16, number 

of generations - 16, mutation rate - 0.3, tournament size - 3, 

early stopping index - 5, if there is no improvement. 

Chromosome fitness was assessed by three-dimensional 

cross-validation as the negative value of the Root Mean 

Squared Error [1, 4, 12]. 

 

IV.EXPERIMENTS 

A software for optimizing the hyperparameters of  

machine learning models was developed in the Python. 

 For the training and testing of the considered models the 

MNIST dataset of handwritten digits and the 

CaliforniaHousing dataset of house prices were selected to 

solve the classification and regression problems. 

The main characteristics of the MNIST (Modified 

National Institute of Standards and Technology) dataset are 

the number of samples - 70,000 images (60,000 for training, 

10,000 for testing), image size - 28x28 pixels (784 features), 

target classes - 10 (for digits 0 to 9), and image color 

description - grayscale. 

The California Housing dataset contains housing price 

data for various regions of California. The main 

characteristics of the collection are the number of samples - 

20640, the number of features - 8, and the target variable - 

the average house price. 

While preprocessing, the data was scaled to ensure the 

acceleration and stabilization of the model training process. 

During GA experiments, reduced versions of the datasets 

were used to increase computational efficiency. 

The MNIST dataset was used to optimize the 

hyperparameters of the MLPClassifier and 

RandomForestClassifier classification models, and the 

California Housing dataset was used for the 

RandomForestRegressor regression model. 

The results of GA for the MLPClassifier model for two 

different initial populations are presented in Figs. 1, 2. The 

run time was 2547 and 2234 seconds, respectively. 

 

 
 

Figure 1. Generation number and accuracy of the model 
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Figure 2. Generation number and accuracy of the model 

 

The results of GA for the Random Forest Classifier 

model for different initial populations are presented in Figs. 

3, 4. The run time was 1505 and 2234 seconds, respectively. 

The results of GA for the Random Forest Regressor 

model for different initial populations are in Fig. 5. The run 

time was 303 and 309 seconds, respectively. 

During the experiments, the results obtained by the GA 

were compared with the results obtained by the Grid Search 

and Random Search optimization algorithms [20]. 

Remember that the Grid Search method involves systematic 

testing of complete combinations of predefined parameter 

values. Although it is a simple and understandable method, it 

has a  

 

 
Figure 3. Generation number and  accuracy of the model 

 

 
 

Figure 4. Generation number and  accuracy of the model 

 

 
Figure 5. Generation number and  RMSE metric of the 

model 

number of limitations.  

The Random Search method selects a predefined number 

of random combinations of parameters. This method is more 

efficient than Grid Search in some cases, but has its 

limitations [20]. 

Table 1 represents the results of a comparative analysis 

of the GA and Grid Search algorithms for the MLPClassifier 

model trained on the MNIST dataset, and Table 2 represents 

the results of a comparative analysis of the GA and Random 

Search algorithms for the Random Forest Classifier model 

trained on the same MNIST dataset. 

Table 1 

 

 
 

 

 

 

 

 

 

Model Algorithm Best 

Accuracy 

Optimal values of 

hyperparameters 

Run time Accuracy on 

testing set 

MLPClassifier GA 0.9462 [(128, 128), relu, 

0.01, 0.001, 64] 

2547 sec. 0.9798  

Grid Search 0.9462 [(128, 128), relu, 

0.01, 0.001, 64] 

3303.5 sec. 0.9759 
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Table 2 

 

 
The results show that the GA allowed us to achieve the 

same accuracy of the model in a significantly shorter period 

of time. On the other hand, the results of model testing show 

that the hyperparameter values obtained by the GA provide 

not only high classification accuracy, but also excellent 

generalization ability to new data. 

Table 3 represents the results of a comparative analysis 

of the GA and Random Search algorithms for the 

RandomForest Regressor model trained on the California 

Housing dataset. 

 

Table 3 

 
These results show that the GA is effective for regression 

models as well, providing high accuracy of predictions. 

V.CONCLUSION 

The paper presented various methods for optimizing 

hyperparameters of machine learning models: Grid Search, 

Random Search, Genetic Algorithm. A comparative analysis 

of the results of the GA with the results of the considered 

methods was performed. The features that make genetic 

algorithms competitive and effective for complex problems 

were identified. 

A GA with a general structure was presented, which was 

adapted for optimizing hyperparameters of various models 

and datasets. All the experiments show that the GA 

maintains the diversity of the search domain and avoids 

premature stopping at local optima, and gradually improve 

the quality of solutions within each generation. 

Thus, GA are suitable for hyperparameter optimization 

problems in ML models, especially when the search domain 

is large and has complex dependencies. The results obtained 

in the work confirm that the GA can be a credible alternative 

to classical searching and optimization methods, as well as 

an effective tool to improve ML models and increase the 

overall prediction accuracy. 
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Model Algorithm Best 

Accuracy 

Optimal values of 

hyperparameters 

Run time Accuracy 

on testing 

set 

RandomForest 

Classifier 

GA 1 0.9516 [ 178 est, 69 depth, 3 

split, 1 leaf, no 

bootstrap] 

1505 

sec․ 

0.9723 

GA 2 0.9526 [ 268 est, 54 depth, 2 

split, 1 leaf, no 

bootstrap] 

2234 

sec․ 

0.9708 

Random 

search 

0.9526 [ 132 est, 48 depth, 2 

split, 1 leaf, no 

bootstrap] 

3033.5 

sec. 

0.9658 

 

Model Algorithm Mean square 

error 

(RMSE) 

Best 

hyperparameter 

values 

Run time Accuracy on 

testing set 

 

RandomForest 

Regressor 

GA  0.5476 [ 117 est, 23 

depth, 2 split, 1 

leaf, 3 features] 

1505 sec․ 0.9723 

Random 

search 

0.5500 [ 116 est, 35 

depth, 5 split, 1 

leaf, 3 features] 

180 sec․ 0.3258 
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