
Optimizing of Hyperparameters of Machine Learning

Models Using Genetic Algorithms

Anna Hovakimyan

Yerevan State University

Yerevan, Armenia

e-mail: ahovakimyan@ysu.am

Siranush Sargsyan
Yerevan State University

Yerevan, Armenia

e-mail: siranushs@ysu.am

Abstract—The paper studies the problem of optimizing

hyperparameters of machine learning models, which have a

significant impact on the quality of the model and its

performance. To solve the problem, a genetic algorithm (GA)

was developed and applied to optimize the hyperparameters of

various models. The MLPClassifier and RandomForest

Classifier models were trained and tested on the MNIST

dataset, and the RandomForestRegressor model was trained

and tested on the California Housing dataset. The optimization

results were compared with the results of traditional Random

Search and Grid Search methods, demonstrating the

effectiveness of the genetic algorithm in terms of both

computational resources and the quality of the resulting

models.

Keywords—Machine learning, hyperparameters

optimization, genetic algorithm.

I. INTRODUCTION

Currently, with the development of data science and

machine learning (ML), the need to increase the efficiency of

models has grown. The performance of machine learning

models depends significantly not only on the quality of the

data, but also on the correct choice of hyperparameters for

the models. Manually tuning hyperparameters can be time-

consuming, require deep expertise, and often do not provide

the best possible results [1,2,3,6]. In this regard, the

development of automated optimization methods is

important.

 Many solutions have been proposed to address the

problem of hyperparameter optimization (HPO) in machine

learning models.

A method, Hyperband, based on the Bandit algorithm, is

developed that focuses on speeding up random search

through adaptive resource allocation and early stopping. This

method has been shown to provide speedups of more than an

order of magnitude for various deep learning and kernel-

based models [7].

The advantages of the bandit-based HPO method and

evolutionary search approach are combined to achieve high

performance for different ML models [8].

A method is proposed that outperforms both Bayesian

optimization and bandit-based methods on a wide range of

problems, such as support vector machines, feed-forward

neural networks, Bayesian neural networks, deep

reinforcement learning, and convolutional neural networks

[9].

An evolutionary approach based on genetic algorithms

was also used. The NSGA-II algorithm provides a much

better distribution of solutions and better convergence near

the true Pareto-optimal front [10].

Genetic algorithms (GAs), inspired by the principles of

biological evolution, represent an effective method for

solving optimization problems, in particular, for finding

optimal values for hyperparameters in machine learning

models. The main advantage of GA is that it can avoid

stopping at local optima and, by efficiently exploring the

search domain, produce sufficiently acceptable solutions [11-

13].

The paper presents the development and application of

GA to the problem of optimizing hyperparameters of

machine learning models. A software system has been

developed, experiments have been conducted, and the results

have been analyzed to demonstrate the applicability of GA in

such problems. The optimization results were compared with

the results of traditional Random Search and Grid Search

methods.

II. HYPERPARAMETERS OF MACHINE LEARNING MODELS AND

THEIR IMPACT ON MODEL QUALITY

Machine learning models typically have two types of

parameters: trainable parameters, which are changing during

the model’s training on data, and hyperparameters, that are

defined before training and directly affect the model

structure, training process, and final quality of the model [1-

4].

The correct choice of hyperparameters is of great

importance. It can significantly change the learning speed of

the model, eliminate possible overfitting or underfitting, and

affect the generalization ability of the model. Examples of

hyperparameters are the learning rate of the model, the

structure of the neural network (number of hidden layers,

number of neurons in each hidden layer), the number of trees

in the decision forest, and the regularization coefficients [2-

6].

Hyperparameter tuning is most often done manually,

through experimentation, search methods, or the use of

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_04 24

optimization algorithms. These methods include Grid

Search, which provides the consideration of all possible

combinations of values defined in the search domain,

Random Search, which supposes random selection of value

combinations in the search domain, and Heuristic methods,

which include GAs, particle swarm optimization (PSO),

simulated annealing (SA), and other evolutionary methods

[11-16]. Heuristic methods are mostly used in cases when

the search domain is very large and optimal solutions are

difficult to find with traditional methods due to nonlinear

relationships or complex parameter interactions [17-19].

III. APPLICATION OF GENETIC ALGORITHMS IN MACHINE

LEARNING MODELS

Genetic algorithms find application in various machine

learning problems, where efficient and automated selection

of model parameters or design of model structure is required.

We consider three machine learning models:

MLPClassifier, RandomForestClassifier, and RandomForest

Regressor, and a GA was used to determine the optimal

values of their hyperparameters [1].

The chromosome encodes the vector of model

hyperparameters. The fitness function is constructed based

on the model quality assessment metrics [1,3-5,12]. Genetic

operations are defined as follows [13,14].

Crossover. Each gene is chosen randomly from one of

the parents.

Mutation. A random change occurs within an individual.

By changing the value of a random gene, mutation ensures

the introduction of novelty and avoids premature

convergence to suboptimal solutions.

Tournament Selection. The best ones are selected from

the population.

For the MLPClassifier model, we consider the following

hyperparameters: hidden layers’_size of network, activation

function, L2 regularization coefficient, initial learning rate,

and training batch size.

The GA for the MLPClassifier model was run with the

following parameters: population size - 16, number of

generations - 10, mutation rate - 0.3, tournament size - 3,

early stopping criterion - 5, if there is no improvement.

Fitness was assessed based on the average value of the three-

dimensional cross-validation accuracy [1, 11, 12].

The list of considered hyperparameters of the

RandomForestClassifier model is the following: number of

trees, maximum depth of trees, minimum number of samples

for branching, minimum number of samples per leaf, and

bootstrap.

For this model, the GA was run two times with the

following parameters: population size - 10, 16, number of

generations - 16, 16; mutation rate - 0.3, 0.3; tournament size

- 3, 3; early stopping criterion - 5, 5, if there is no

improvement. The fitness of the chromosomes was assessed

based on the average accuracy value of three-dimensional

cross-validation. The model was trained on 10,000 data

points.

The list of the considered hyperparameters of the

RandomForestRegressor model is the same as for the

RandomForestClassifier model.

The GA for the RandomForestRegressor model was run

with the following parameters: population size - 16, number

of generations - 16, mutation rate - 0.3, tournament size - 3,

early stopping index - 5, if there is no improvement.

Chromosome fitness was assessed by three-dimensional

cross-validation as the negative value of the Root Mean

Squared Error [1, 4, 12].

IV.EXPERIMENTS

A software for optimizing the hyperparameters of

machine learning models was developed in the Python.

 For the training and testing of the considered models the

MNIST dataset of handwritten digits and the

CaliforniaHousing dataset of house prices were selected to

solve the classification and regression problems.

The main characteristics of the MNIST (Modified

National Institute of Standards and Technology) dataset are

the number of samples - 70,000 images (60,000 for training,

10,000 for testing), image size - 28x28 pixels (784 features),

target classes - 10 (for digits 0 to 9), and image color

description - grayscale.

The California Housing dataset contains housing price

data for various regions of California. The main

characteristics of the collection are the number of samples -

20640, the number of features - 8, and the target variable -

the average house price.

While preprocessing, the data was scaled to ensure the

acceleration and stabilization of the model training process.

During GA experiments, reduced versions of the datasets

were used to increase computational efficiency.

The MNIST dataset was used to optimize the

hyperparameters of the MLPClassifier and

RandomForestClassifier classification models, and the

California Housing dataset was used for the

RandomForestRegressor regression model.

The results of GA for the MLPClassifier model for two

different initial populations are presented in Figs. 1, 2. The

run time was 2547 and 2234 seconds, respectively.

Figure 1. Generation number and accuracy of the model

25

Figure 2. Generation number and accuracy of the model

The results of GA for the Random Forest Classifier

model for different initial populations are presented in Figs.

3, 4. The run time was 1505 and 2234 seconds, respectively.

The results of GA for the Random Forest Regressor

model for different initial populations are in Fig. 5. The run

time was 303 and 309 seconds, respectively.

During the experiments, the results obtained by the GA

were compared with the results obtained by the Grid Search

and Random Search optimization algorithms [20].

Remember that the Grid Search method involves systematic

testing of complete combinations of predefined parameter

values. Although it is a simple and understandable method, it

has a

Figure 3. Generation number and accuracy of the model

Figure 4. Generation number and accuracy of the model

Figure 5. Generation number and RMSE metric of the

model

number of limitations.

The Random Search method selects a predefined number

of random combinations of parameters. This method is more

efficient than Grid Search in some cases, but has its

limitations [20].

Table 1 represents the results of a comparative analysis

of the GA and Grid Search algorithms for the MLPClassifier

model trained on the MNIST dataset, and Table 2 represents

the results of a comparative analysis of the GA and Random

Search algorithms for the Random Forest Classifier model

trained on the same MNIST dataset.

Table 1

Model Algorithm Best

Accuracy

Optimal values of

hyperparameters

Run time Accuracy on

testing set

MLPClassifier GA 0.9462 [(128, 128), relu,

0.01, 0.001, 64]

2547 sec. 0.9798

Grid Search 0.9462 [(128, 128), relu,

0.01, 0.001, 64]

3303.5 sec. 0.9759

26

Table 2

The results show that the GA allowed us to achieve the

same accuracy of the model in a significantly shorter period

of time. On the other hand, the results of model testing show

that the hyperparameter values obtained by the GA provide

not only high classification accuracy, but also excellent

generalization ability to new data.

Table 3 represents the results of a comparative analysis

of the GA and Random Search algorithms for the

RandomForest Regressor model trained on the California

Housing dataset.

Table 3

These results show that the GA is effective for regression

models as well, providing high accuracy of predictions.

V.CONCLUSION

The paper presented various methods for optimizing

hyperparameters of machine learning models: Grid Search,

Random Search, Genetic Algorithm. A comparative analysis

of the results of the GA with the results of the considered

methods was performed. The features that make genetic

algorithms competitive and effective for complex problems

were identified.

A GA with a general structure was presented, which was

adapted for optimizing hyperparameters of various models

and datasets. All the experiments show that the GA

maintains the diversity of the search domain and avoids

premature stopping at local optima, and gradually improve

the quality of solutions within each generation.

Thus, GA are suitable for hyperparameter optimization

problems in ML models, especially when the search domain

is large and has complex dependencies. The results obtained

in the work confirm that the GA can be a credible alternative

to classical searching and optimization methods, as well as

an effective tool to improve ML models and increase the

overall prediction accuracy.

REFERENCES

[1] Sibanjan Das and Umit Mert Cakmak, Hands-On Automated
Machine Learning: Optimize Machine Learning Models and

Algorithms Using AutoML Techniques and Tools, Packt Publishing,

Birmingham, 2021.

[2] Kizito Nyuytiymbiy, (2020) Parameters and Hyperparameters in

Machine Learning and Deep Learning, [Online], Available:
https://towardsdatascience.com/parameters-and-hyperparameters-

aa609601a9ac/

[3] Bischl et al., (2023) Hyperparameter Optimization: Foundations,
Algorithms, Best Practices and Open Challenges, [Online], Available:
https://doi.org/10.1002/widm.1484

[4] Ivan Belcic, (2024) What is hyperparameter tuning, [Online],
Available: https://www.ibm.com/think/topics/hyperparameter tuning

[5] Karl et al., “Multi-Objective Hyperparameter Optimization in

Machine Learning - An Overview”, ACM Transactions on
Evolutionary Learning and Optimization, vol. 3, issue 4, no. 16, pp.

1-50, 2022, https://doi.org/10.1145/36105

[6] Franceschi et al., (2024) Hyperparameter Optimization in Machine
Learning, [Online], Available: https://arxiv.org/abs/2410.22854

[7] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and

Ameet Talwalkar, “Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization”,Journal of Machine Learning

Research, vol.18, pp.1-52, 2018.

[8] Noor Awad, Neeratyoy Mallik, and Frank Hutter, “DEHB:
Evolutionary Hyperband for Scalable, Robust and Efficient

Hyperparameter Optimization”, Proceedings of the Thirtieth

International Joint Conference on Artificial Intelligence (IJCAI-21),
Montreal, Canada, pp.2147-2153, 2021.

[9] Stefan Falkner, Aaron Klein, and Frank Hutter.” Robust and Efficient

Hyperparameter Optimization at Scale”, Proceedings of the 35th
International Conference on Machine Learning, Stockholm, Sweden,

pp.20-30, 2018.
[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan,

“A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”,

IEEE Transactions On Evolutionary Computation, vol. 6, no. 2,
pp.183-188, 2002.

[11] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press,

Cambridge, Massachusetts, 1996.
[12] David E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, Boston, 1989.

[13] Randy L. Haupt and Sue Ellen Haupt, Practical Genetic Algorithms,
Second Edition, Wiley, New York, 2004.

[14] Srishti Chaudhary, (2022) Applications of Genetic Algorithms in

Machine Learning, [Online], Available: https://www.turing.com/kb/
genetic-algorithm-applications-in-ml

[15] E. Eiben and J. E. Smith. Introduction to Evolutionary Computing,

Second Edition, Springer, New York, 2015.
[16] Kenneth A. and De Jong, Evolutionary Computation: A Unified

Approach, MIT Press, Cambridge, Massachusetts, 2006.

[17] Lee, S., Kim, J., Kang, H., Kang, D.-Y., and Park, J. (2021). Genetic
Algorithm Based Deep Learning Neural Network Structure and

Hyperparameter Optimization, Applied Sciences, 11, Article 2.

https://doi.org/10.3390/app1102074.
[18] Shanthababu Pandian (2025), Essential Hyperparameter Tuning

Techniques, [Online], Available: https://www.analyticsvidhya.com/

blog/2022/02/a-comprehensive-guide-on-hyperparameter-tuning-and-
its-techniques/

[19] Sarah Lee (2025), Effective Strategies and Best Practices in

Hyperparameter Tuning, [Online], Available: https://www.number
analytics.com/blog/effective-strategies-best-practices-

hyperparameter-tuning/

[20] Pedro Liashchynskyi and Pavlo Liashchynskyi, (2019) Grid Search,
Random Search, Genetic Algorithm: A Big Comparison for NAS,

[Online], Available: https://arxiv.org/abs/1912.06059

Model Algorithm Best

Accuracy

Optimal values of

hyperparameters

Run time Accuracy

on testing

set

RandomForest

Classifier

GA 1 0.9516 [178 est, 69 depth, 3

split, 1 leaf, no

bootstrap]

1505

sec․

0.9723

GA 2 0.9526 [268 est, 54 depth, 2

split, 1 leaf, no

bootstrap]

2234

sec․

0.9708

Random

search

0.9526 [132 est, 48 depth, 2

split, 1 leaf, no

bootstrap]

3033.5

sec.

0.9658

Model Algorithm Mean square

error

(RMSE)

Best

hyperparameter

values

Run time Accuracy on

testing set

RandomForest

Regressor

GA 0.5476 [117 est, 23

depth, 2 split, 1

leaf, 3 features]

1505 sec․ 0.9723

Random

search

0.5500 [116 est, 35

depth, 5 split, 1

leaf, 3 features]

180 sec․ 0.3258

27

https://towardsdatascience.com/author/kizitonyu/
https://www.ibm.com/think/topics/hyperparameter%20tuning
https://arxiv.org/abs/2410.22854
https://arxiv.org/search/cs?searchtype=author&query=Li,+L
https://arxiv.org/search/cs?searchtype=author&query=Jamieson,+K
https://arxiv.org/search/cs?searchtype=author&query=DeSalvo,+G
https://arxiv.org/search/cs?searchtype=author&query=Rostamizadeh,+A
https://arxiv.org/search/cs?searchtype=author&query=Talwalkar,+A
https://www.turing.com/kb/%20genetic-algorithm-applications-in-ml
https://www.turing.com/kb/%20genetic-algorithm-applications-in-ml
https://www.analyticsvidhya.com/
https://www.number/

