On Classification of Moufang Hyperidentities

Yuri Movsisyan Yerevan State University Yerevan, Armenia e-mail: movsisyan@ysu.am Sergey Davidov Yerevan State University Yerevan, Armenia e-mail: davidov@ysu.am

Abstract—A binary algebra $(Q;\Sigma)$ is called an l-algebra if there exists an operation $A\in\Sigma$ such that Q(A) is a loop. This work provides a description and classification of Moufang hyperidentities in non-trivial binary algebras with a loop operation.

Keywords—Loop, quasigroup, hyperidentity, Moufang loop, Moufang identity

I. INTRODUCTION

A binary algebra $(Q; \Sigma)$ is said to be an invertible algebra if all operations from Σ are quasigroups.

A binary algebra $(Q; \Sigma)$ is called an l-algebra (q-algebra) if there exists an operation $A \in \Sigma$ such that Q(A) is a loop (a quasigroup).

A binary algebra $(Q;\Sigma)$ is called functionally non-trivial, if $|\Sigma|>1$.

Definition 1: A functional variable $X \in]w_1[\cup]w_2[$ is said to be singular in a hyperidentity $w_1 = w_2$ if X occurs just once in it and at least one of the following conditions holds:

- a) a subword $w=X(\omega_1,\omega_2)$ involves object variables $x\in[w_1]$ and $y\in[w_2]$, each of which occurs just once in w;
- b) a subword $w=X(\omega_1,\omega_2)$ has the form $X(\omega_1,x)$ or $X(x,\omega_2)$ and there exists an object variable $y\in [w]$ different from x and occurring just once in w, where [w] is the set of object variables occurring in w.

Lemma 1: ([1]-[3]) In a non-trivial binary algebra with a quasigroup operation, a hyperidentity involving a singular functional variable cannot be satisfied.

Proof 1: Assume not. Let $Q = (Q; \Sigma)$ be a functionally non-trivial q-algebra such that Σ contains an invertible operation A, and suppose that Q satisfies the hyperidentity

$$w_1 = w_2$$

having a singular functional variable X. We give X two different values A_1 and A_2 from Σ , and for each such substitution, we give the remaining functional variables the same value A from Σ , where, of course, Q(A) is a quasigroup. This gives two identities:

$$w_1' = w_2', \quad w_1'' = w_2''.$$

Suppose, for definiteness, that X occurs in w_1 . Then the expressions for w_2' and w_2'' are identical, so that $w_2' = w_2''$ and, thus, $w_1' = w_1''$. All the operations in w_1' and w_1'' are equal to

A except for A_1 and A_2 . Since Q(A) is a quasigroup, then after all cancellations, we get the identity

$$A_1(\omega_1^0, \omega_2^0) = A_2(\omega_1^0, \omega_2^0).$$

Let $X(\omega_1,\omega_2)$ be a subword satisfying condition a) of Definition 1. Apart from x and y, we give each object variable an arbitrary but fixed value in Q. Then ω_1^0 becomes $\lambda(x)$ and ω_2^0 becomes mu(y), where λ and μ are permutations of Q, since they are products of translations in the quasigroup Q(A). Thus, we have

$$A_1(\lambda x, \mu y) = A_2(\lambda x, \mu y).$$

Since λ and μ are permutations, we deduce from this that $A_1 = A_2$, contradicting the choice of these operations. Case b) is dealt with in a similar fashion.

Consider the Moufang identity (m_1) :

$$x(y \cdot xz) = (xy \cdot x)z \qquad (m_1).$$

If a non-trivial Moufang hyperidentity holds in a non-trivial l-algebra, then by Lemma 1, each operation symbol must appear at least twice. Therefore, from identity (m1), the following 40 hyperidentities arise:

$$X(x, X(y, Y(x, z))) = Y(X(X(x, y), x), z),$$
 (1)

$$X(x, Y(y, X(x, z))) = X(Y(X(x, y), x), z),$$
 (2)

$$X(x, Y(y, Z(x, z))) = Z(Y(X(x, y), x), z),$$
 (3)

$$Y(x, X(y, X(x, z))) = X(X(Y(x, y), x), z),$$
(4)

$$Y(x, X(y, X(x, z))) = Y(X(X(x, y), x), z),$$
 (5)

$$X(x, X(y, Y(x, z))) = X(Y(X(x, y), x), z),$$
 (6)

$$X(x, X(y, Y(x, z))) = X(X(Y(x, y), x), z),$$
 (7)

$$X(x, Y(y, X(x, z))) = Y(X(X(x, y), x), z),$$
 (8)

$$X(x, Y(y, X(x, z))) = X(X(Y(x, y), x), z),$$
 (9)

$$Y(x, X(y, X(x, z))) = X(Y(X(x, y), x), z),$$
(10)

$$X(x, Y(y, Z(x, z))) = X(Y(Z(x, y), x), z),$$
 (11)

$$X(x, Y(y, Z(x, z))) = X(Z(Y(x, y), x), z),$$
 (12)

$$X(x, Y(y, Z(x, z))) = Y(X(Z(x, y), x), z),$$
 (13)

$$X(x, Y(y, Z(x, z))) = Y(Z(X(x, y), x), z),$$
 (14)

$$X(x, Y(y, Z(x, z))) = Z(X(Y(x, y), x), z),$$
 (15)

$$X(x, X(y, Y(x, z))) = Y(Y(Y(x, y), x), z),$$
 (16)

$$X(x, X(y, X(x, z))) = Y(Y(X(x, y), x), z),$$
 (17)

$$X(x, Y(y, X(x, z))) = Y(Y(Y(x, y), x), z),$$
 (18)

$$Y(x, X(y, X(x, z))) = Y(Y(Y(x, y), x), z),$$
 (19)

$$X(x, X(y, X(x, z))) = Y(X(Y(x, y), x), z),$$
 (20)

$$X(x, X(y, Y(x, z))) = Y(Z(Z(x, y), x), z),$$
 (21)

$$X(x, X(y, Y(x, z))) = Z(Y(Z(x, y), x), z),$$
 (22)

$$X(x, X(y, Y(x, z))) = Z(Z(Y(x, y), x), z),$$
 (23)

$$X(x, Y(y, X(x, z))) = Y(Z(Z(x, y), x), z),$$
 (24)

$$X(x, Y(y, X(x, z))) = Z(Y(Z(x, y), x), z),$$
 (25)

$$X(x, Y(y, X(x, z))) = Z(Z(Y(x, y), x), z),$$

$$Y(x, X(y, X(x, z))) = Y(Z(Z(x, y), x), z),$$
 (27)

$$Y(x, X(y, X(x, z))) = Z(Y(Z(x, y), x), z),$$
 (28)

$$Y(x, X(y, X(x, z))) = Z(Z(Y(x, y), x), z),$$
 (29)

$$X(x, X(y, X(x, z))) = Y(Y(Y(x, y), x), z),$$
 (30)

$$X(x, X(y, Y(x, z))) = X(Y(Y(x, y), x), z),$$
 (31)

$$X(x, X(y, Y(x, z))) = Y(X(Y(x, y), x), z),$$
 (32)

$$X(x, X(y, Y(x, z))) = Y(Y(X(x, y), x), z),$$
 (33)

$$X(x, Y(y, X(x, z))) = X(Y(Y(x, y), x), z),$$
 (34)

$$Y(x, X(y, X(x, z))) = X(Y(Y(x, y), x), z),$$
 (35)

$$Y(x, X(y, X(x, z))) = Y(X(Y(x, y), x), z),$$
 (36)

$$Y(x, X(y, X(x, z))) = Y(Y(X(x, y), x), z),$$
 (37)

$$X(x, Y(y, X(x, z))) = Y(Y(X(x, y), x), z),$$
 (38)

$$X(x, Y(y, X(x, z))) = Y(X(Y(x, y), x), z),$$
 (39)

$$X(x, X(y, X(x, z))) = X(Y(Y(x, y), x), z),$$
 (40)

II. MAIN RESULTS

Definition 2: An l-algebra $(Q; \Sigma)$ is said to have structure (A) (or (A')), if there exists a Moufang loop $Q(\circ)$ such that each operation $A_i \in \Sigma$ is defined by:

$$A_i(x,y) = x \circ (t_i \circ y)$$

$$(A_i(x,y) = (x \circ t_i) \circ y),$$

where $t_i \in Q$ corresponds to operation A_i .

Definition 3: An l-algebra $(Q; \Sigma)$ is said to have structure (B), if there exists a Moufang loop $Q(\circ)$ such that each operation $A_i \in \Sigma$ is defined by:

$$A_i(x,y) = x \circ (t_i \circ y), \ t_i \in N(Q(\circ))$$

where $N(Q(\circ))$ is the nucleus of the loop $Q(\circ)$.

Definition 4: An l-algebra $(Q; \Sigma)$ is said to have structure (C), if there exists a Moufang loop $Q(\circ)$ such that each operation $A_i \in \Sigma$ is defined by:

$$A_i(x,y) = (x \circ y) \circ t_i, \ t_i \in Z(Q(\circ))$$

where $Z(Q(\circ))$ is the center of the loop $Q(\circ)$.

Definition 5: An l-algebra $(Q; \Sigma)$ is said to have structure (D), if there exists a Moufang loop $Q(\circ)$ such that each operation $A_i \in \Sigma$ is defined by:

$$A_i(x,y) = x \circ (t_i \circ y)$$

for some $t_i \in N(Q(\circ)) \cap Z(Q(\circ))$.

Definition 6: An l-algebra $(Q; \Sigma)$ is said to have structure (E), if there exists a Moufang loop $Q(\circ)$ such that each operation $A_i \in \Sigma$ is defined by:

$$A_i(x,y) = x \circ (t_i \circ y)$$

for some $t_i \in N(Q(\circ)) \cap Z(Q(\circ))$, such that $t_i^2 = t_i \circ t_i = e$, where e is the identity of the loop $Q(\circ)$.

Definition 7: An l-algebra $(Q; \Sigma)$ is said to have structure (F) (or (F')), if there exists a Moufang loop $Q(\circ)$ such that each operation $A_i \in \Sigma$ is defined by:

$$A_i(x,y) = x \circ (t_i \circ y)$$

$$(A_i = (x, y) = t_i \circ (x \circ y),$$

for some $t_i \in N(Q(\circ)) \cap Z(Q(\circ))$, such that $t_i^3 = t_i \circ t_i \circ t_i = e$, where e is the identity of the loop $Q(\circ)$.

Remark 1: It is clear that if an l-algebra $(Q; \Sigma)$ has any of the above-defined structures, then all its operations $A_i \in \Sigma$ will be loops with unit t_i^{-1} , where $t_i^{-1} \circ t_i = t_i \circ t_i^{-1} = e$.

Theorem 1: In the class of all non-trivial l-algebras, each non-trivial Moufang hyperidentity defined by the equation: $x(y \cdot xz) = (xy \cdot x)z$, is equivalent (in terms of satisfiability) to one of the following twelve hyperidentities:

$$X(x, X(y, Y(x, z))) = Y(X(X(x, y), x), z),$$
 (M₁)

$$X(x, Y(y, X(x, z))) = X(Y(X(x, y), x), z),$$
 (M₂)

$$Y(x, X(y, X(x, z))) = X(X(Y(x, y), x), z),$$
 (M₃)

$$Y(x, X(y, X(x, z))) = Y(X(X(x, y), x), z),$$
 (M₄)

(26)

$$X(x, X(y, Y(x, z))) = X(Y(X(x, y), x), z),$$
 (M₅)

$$X(x, X(y, Y(x, z))) = X(X(Y(x, y), x), z),$$
 (M₆)

$$X(x, X(y, Y(x, z))) = Y(Y(Y(x, y), x), z),$$
 (M₇)

$$X(x, Y(y, X(x, z))) = Y(Y(Y(x, y), x), z),$$
 (M₈)

$$X(x, X(y, X(x, z))) = Y(Y(Y(x, y), x), z),$$
 (M₉)

$$X(x, Y(y, X(x, z))) = Y(Y(X(x, y), x), z),$$
 (M₁₀)

$$X(x, Y(y, X(x, z))) = Y(X(Y(x, y), x), z),$$
 (M₁₁)

$$X(x, X(y, X(x, z))) = X(Y(Y(x, y), x), z).$$
 (M₁₂)

From this result, in particular, we obtain the following theorem.

Theorem 2: In the class of all non-trivial invertible algebras with a loop operation, every non-trivial Moufang hyperidentity defined by: $x(y \cdot xz) = (xy \cdot x)z$, is equivalent to one of the hyperidentities: (M_1) , (M_2) , (M_4) , (M_5) , (M_7) , (M_9) , (M_{10}) , (M_{11}) , (M_{12}) .

ACKNOWLEDGMENT

The authors were supported by the State Committee of Science of the Republic of Armenia, grant: 10-3/1-41, and Yu. Movsisyan was supported by the State Committee of Science of the Republic of Armenia, grant: 25RG-1A187.

REFERENCES

- [1] Yu. M. Movsisyan, Introduction to the theory of algebras with hyperidentities, Yerevan State University Press (Russian), 1986.
- [2] Yu. M. Movsisyan, Hyperidentities and Hypervarieties in Algebras, Yerevan State University Press (Russian), 1990.
- [3] Yu. M. Movsisyan, Hyperidentities: Boolean and De Morgan Structures, World Scientific, 2022.