Method for Counting the Number of Interior Points of the Standard Arrangement of the Discrete Torus

Vilik Karakhanyan Institute for Informatics and Automation Problems of NAS RA Yerevan, Armenia e-mail: kavilik@gmail.com

Abstract—In this paper, we consider an n-dimensional torus with generating cycles of even length and present a method for calculating the number of interior points of standard arrangements.

 ${\it Keywords}$ —Discrete torus, standard arrangement, interior point.

I. Introduction

Definition 1. For any integers

$$1 \leq k_1 \leq k_2 \leq \cdots \leq k_n < \infty,$$

the multivalued n-dimensional torus $T_{k_1k_2\cdots k_n}^n$ is defined as the set of vertices:

$$T_{k_1k_2\cdots k_n}^n =$$
= $\{(x_1, x_2, \cdots, x_n) | -k_i + 1 \le x_i \le k_i, x_i \in \mathbb{Z}, 1 \le i \le n\},$
where two vertices $x = (x_1, x_2, \cdots, x_n)$ and $y =$
 (y_1, y_2, \cdots, y_n) in $T_{k_1k_2\cdots k_n}^n$ are considered neighbours if they differ in exactly one coordinate i , and either:

- $|x_i y_i| = 1$, or
- $x_i = -k_i + 1$ and $y_i = k_i$, or vice versa.

The sum and difference of two such vectors x and y are defined componentwise as:

$$\begin{array}{c} x \pm y = (x_1 \pm y_1, x_2 \pm y_2, \cdots, x_n \pm y_n) = \\ = z = (z, z_2, \cdots, z_n), \\ \text{where } -k_i + 1 \leq z_i \leq k_i \ \text{ and } z_i \equiv (x_i \pm y_i) (mod \ 2k_i). \end{array}$$

Let us define the *norm of a vertex* $x = (x_1, x_2, \dots, x_n)$ as the number $||x|| = \sum_{i=1}^{n} |x_i|$.

The distance between two vertices $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ is defined as $\rho(x, y) = ||x - y||$.

The *sphere* of radius k centered at a point $x \in T^n_{k_1k_2\cdots k_n}$ is defined as the set:

$$S^n(x,k) = \big\{ y \in T^n_{k_1k_2\cdots k_n} \; \big| \; \rho(x,y) \leq k \big\}.$$

The *shell* (or *spherical layer*) of radius k centered at x is defined as the set:

$$O^{n}(x,k) = \{ y \in T^{n}_{k_{1}k_{2}\cdots k_{n}} \mid \rho(x,y) = k \}.$$

Let $e_i = (\alpha_1, \alpha_2, \cdots, \alpha_n)$ denote *the unit vector in the i-th direction*, where $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$. Also, let $\tilde{1} = (1,1,\cdots,1)$ and $\tilde{0} = (0,0,\cdots,0)$ denote the **all-ones** and **all-zeros** vectors, respectively.

<u>Definition 2.</u> For a given subset $A \subseteq T_{k_1k_2\cdots k_n}^n$ we say that a vertex $x \in A$ is an *interior point* of A, if all of its neighbouring vertices also belong to A. We denote by B(A) the set of all interior points of A.

For any vertex $x=(x_1,x_2,\cdots,x_n)$ of $T^n_{k_1k_2\cdots k_n}$, we define:

- $|x| = (|x_1|, |x_2|, \dots, |x_n|),$
- $\delta(x) = (\alpha_1, \alpha_2, \dots, \alpha_n)$, where $\alpha_i = 1$ if $x_{n-i+1} > 0$ and $\alpha_i = 0$ if $x_{n-i+1} \le 0$.

For two n-dimensional vectors $x = (x_1, x_2, \cdots, x_n)$ and $y = (y_1, y_2, \cdots, y_n)$ with nonnegative integer coordinates, we say that x lexicographically precedes y (written x < y) if there exists an index $r, 1 \le r \le n$, such that $x_i = y_i$ for $1 \le i < r$ and $x_r < y_r$.

Now we define an order on the vertices of the torus $T^n_{k_1k_2\cdots k_n}$ as follows:

a vertex x precedes a vertex y (written $x \in y$), if and only if one of the following conditions holds:

- 1. $\|x\| < \|y\|$, or
- 2. ||x|| = ||y|| and $\delta(y)$ lexicographically precedes $\delta(x)$, or
- 3. ||x|| = ||y||, $\delta(x) = \delta(y)$, and |y| lexicographically precedes |x|.

It is easy to check that the order \Leftarrow defined on the vertices of the torus $T^n_{k_1k_2\cdots k_n}$ is a linear order.

<u>Definition 3.</u> The first a vertices of the torus $T^n_{k_1k_2\cdots k_n}$ taken according to the above defined linear order, are called the <u>standard arrangement</u> of cardinality a, $0 \le a \le |T^n_{k_1k_2\cdots k_n}|$.

The torus $T_{k_1k_2\cdots k_n}^n$ with $k_1=k_2=\cdots=k_n=1$ is called the n - dimensional unit cube, and is denoted by E^n .

For a Boolean vector $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$, the set $\alpha(T^n_{k_1k_2\cdots k_n}) = \{x \in T^n_{k_1k_2\cdots k_n} \mid \delta(x) = \alpha\}$ is called the α - *part* of the torus $T^n_{k_1k_2\cdots k_n}$. It is clear that

$$T_{k_1k_2\cdots k_n}^n = \bigcup_{\alpha\in E^n} \alpha(T_{k_1k_2\cdots k_n}^n)$$

and all α -parts of the torus are isomorphic.

Moreover, the α - parts of $T^n_{k_1k_2\cdots k_n}$ are arranged according to the order \Leftarrow .

For two vertices $x=(x_1,x_2,\cdots,x_n)$ and $y=(y_1,y_2,\cdots,y_n)$, belonging to $\alpha(T^n_{k_1k_2\cdots k_n})$, we define their sum as:

 $x + y = (x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n) = (z_1, z_2, \cdots, z_n),$ where $(x_i + y_i) \equiv z_i \pmod{k_i}$, $1 \le z_i \le k_i$ when $\alpha_i = 1$, and $-k_i + 1 \le z_i \le 0$ when $\alpha_i = 0$, for all $i, 1 \le i \le n$.

Let us define the **sphere** (respectively, **shell**) in $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ –part centered at a point $x \in \alpha(T^n_{k_1 k_2 \dots k_n})$ with radius k, as follows:

$$S_{\alpha}^{n}(x,k) = \left\{ y = x + \sum_{i=1}^{n} (-1)^{1+\alpha_{i}} \cdot r_{i} e_{i} \mid \sum_{i=1}^{n} r_{i} \leq k \right\},\,$$

(respectively, $O_{\alpha}^{n}(x, k) = S_{\alpha}^{n}(x, k) \setminus S_{\alpha}^{n}(x, k - 1)$), where r_{i} are non-negative integers for all $i, 1 \le i \le n$.

The subset of internal vertices of a set $A \subseteq \alpha(T_{k_1k_2\cdots k_n}^n)$ in the α – part is defined as:

$$B_{\alpha}(A) = \{x \in A \mid S_{\alpha}^{n}(x,1) \subseteq A\}.$$

The linear order \Leftarrow defined above between the vertices of $T^n_{k_1k_2\cdots k_n}$ within each α -part coincides with the diagonal sequence defined in [1], the initial segment of which we again call the standard arrangement.

In the works [2-3], some properties of the standard arrangements of the discrete torus $T^n_{k_1k_2\cdots k_n}$ are proved. In particular, it is proved that the standard arrangement of any cardinality has the maximum number of internal vertices. This work presents a method for calculating the number of internal vertices of the standard arrangement.

II. COUNTING THE NUMBER OF INTERIOR POINTS OF THE STANDARD ARRANGEMENT

The special structure of standard arrangements allows us to determine the values of |B(A)| and $|B_{\alpha}(D)|$, where A is the standard arrangement of the torus $T^n_{k_1k_2\cdots k_n}$, and D is the standard arrangement of the α - part $\alpha(T^n_{k_1k_2\cdots k_n})$.

Let us denote
$$|O^n(x,k)| = F_n^k(k_1, k_2, \dots, k_n)$$
 and $|O^n_{\alpha}(x,k)| = f_n^k(k_1, k_2, \dots, k_n)$.

In particular, $f_n^k(k_1, k_2, \dots, k_n) = 0$ if k does not satisfy the condition

$$0 \le k \le \sum_{i=1}^{n} (k_i - 1) = K.$$

It is clear that

$$F_n^k(k_1, k_2, \cdots, k_n) = \sum_{\alpha \in E^n} f_n^{k - \|\alpha\|}(k_1, k_2, \cdots, k_n).$$

The numbers $f_n^k(k_1, k_2, \dots, k_n)$, for $0 \le k \le K$, are determined by the following identity:

$$(1+x+x^{2}+\cdots+x^{k_{1}-1})(1+x+x^{2}+\cdots+x^{k_{2}-1})\cdots$$

$$(1+x+x^{2}+\cdots+x^{k_{n}-1}) =$$

$$= \sum_{k=1}^{K} f_{n}^{k}(k_{1},k_{2},\cdots,k_{n})\cdot x^{k}.$$

Let D be the standard arrangement in α - part of cardinality b, $0 \le b \le \left|\alpha\left(T_{k_1k_2\cdots k_n}^n\right)\right| = \prod_{i=1}^n k_i$, and A be the standard arrangement in $T_{k_1k_2\cdots k_n}^n$ of cardinality a,

$$0 \le a \le |T_{k_1 k_2 \cdots k_n}^n| = 2^n \cdot \prod_{i=1}^n k_i.$$

Then the numbers b and a can be represented as:

$$b = \sum_{i=0}^{k} f_n^i(k_1, k_2, \dots, k_n) + b_1, \text{ where}$$

$$0 \le b_1 < f_n^{k+1}(k_1, k_2, \dots, k_n)$$
(1)

$$a = \sum_{i=0}^{t} F_n^i(k_1, k_2, \dots, k_n) + a_1, \text{ where }$$

$$0 \le a_1 < F_n^{t+1}(k_1, k_2, \dots, k_n)$$
(2)

Lemma 1. If $0 \le b_1 < f_n^{k+1}(k_1, k_2, \cdots, k_n)$, then b_1 can be uniquely represented in the following form:

$$b_1 = \sum_{r=1}^{\mu} \sum_{i=0}^{l_r} f_{n-n_r}^{k(r,j)}(k_{n_r+1}, k_{n_r+2}, \cdots, k_n), \quad (3)$$

where $1 \le n_1 < n_2 < \dots < n_{\mu} < n, l_0 = 0,$ $0 \le l_r < k_{n_r} - 1 \text{ for } 1 \le r \le \mu \text{ and }$

$$k(r,j) = k - \sum_{i=1}^{n_r} k_i + \sum_{i=0}^{r-1} l_i + n_r + r + j.$$

Proof. Indeed, for b_1 there exists such a smallest integer n_1 , $1 \le n_1 < n$, for which

$$f_{n-n_1}^{k(1,0)}(k_{n_1+1},k_{n_1+2},\cdots,k_n) \le b_1 <$$

$$< \sum_{j=0}^{k_{n_1}-1} f_{n-n_1}^{k(1,j)} (k_{n_1+1}, k_{n_1+2}, \cdots, k_n).$$
 (4)

Therefore,

$$b_1 = \sum_{j=0}^{l_1} f_{n-n_1}^{k(1,j)} (k_{n_1+1}, k_{n_1+2}, \cdots, k_n) + b_2, \text{ where}$$

$$0 \le b_2 < f_{n-n_1}^{k(1,l_1)+1} (k_{n_1+1}, k_{n_1+2}, \cdots, k_n).$$

It is evident that, by analogy with (4), one can find the smallest number n_2 , $n_1 < n_2 < n$, for which

$$f_{n-n_2}^{k(2,0)}\big(k_{n_2+1},k_{n_2+2},\cdots,k_n\big) \leq b_2 <$$

$$<\sum_{j=0}^{k_{n_2}-1} f_{n-n_2}^{k(2,j)}(k_{n_2+1},k_{n_2+2},\cdots,k_n)$$

and thus,

$$b_2 = \sum_{i=0}^{l_2} f_{n-n_2}^{k(2,j)} (k_{n_2+1}, k_{n_2+2}, \dots, k_n) + b_3,$$

where $0 \le b_3 < f_{n-n_2}^{k(2,l_2)+1} (k_{n_2+1}, k_{n_2+2}, \cdots, k_n),$

and so on, which completes the proof of the lemma. \square

According to (3), the number $p_k(b_1)$ of all interior vertices of the standard arrangement D, belonging to the shell $O_{\alpha}^{n}(\alpha, k)$, is determined by the following formula:

$$p_k(b_1) = \sum_{r=1}^{\mu} \sum_{j=0}^{l_r} f_{n-n_r}^{k(r,j)-1} \left(k_{n_r+1}, k_{n_r+2}, \cdots, k_n \right).$$
 (5)

Lemma 2. If A is the standard arrangement in $T_{k_1k_2\cdots k_n}^n$ of the cardinality given by (2), where

$$0 \le a_1 < F_n^{t+1}(k_1, k_2, \cdots, k_n)$$

 $0 \leq a_1 < F_n^{t+1}(k_1,k_2,\cdots,k_n),$ then the number a_1 can be uniquely represented in the

$$a_{1} = \sum_{i=1}^{s} \sum_{\alpha \in E^{n-m_{i}}} f_{n}^{t-\|\alpha\|-m_{i}+i}(k_{1}, k_{2}, \cdots, k_{n}) + a_{0},$$

$$where \ 1 \leq m_{1} < m_{2} < \cdots < m_{s} \leq n \ and$$

$$0 \leq a_{0} < f_{n}^{t-n+s}(k_{1}, k_{2}, \cdots, k_{n})$$

$$(6)$$

It is easy to see that when $k_1 = k_2 = \cdots = k_n = 1$, formula (6) coincides with representation (3.1) of work [4].

According to (6) and (5), the number $P_t(a_1)$ of all interior vertices of the standard arrangement A, belonging to the shell $O^n(\tilde{0},t)$, is determined by the following formula:

$$P_{t}(a_{1}) = \sum_{i=1}^{s} \sum_{\alpha \in E^{n-m_{i}}} f_{n}^{t-\|\alpha\|-m_{i}+i-1}(k_{1}, k_{2}, \dots, k_{n}) + \begin{cases} +p_{t-n+s-1}(a_{0}) \end{cases}$$
 (7)

The following theorem follows from (5) and (7).

Theorem. If D is the standard arrangement in the α -part of cardinality (1), and A is the standard arrangement in $T_{k_1k_2\cdots k_n}^n$ of cardinality (2), then

$$|B_{\alpha}(D)| = \sum_{i=0}^{k-1} f_n^i(k_1, k_2, \dots, k_n) + p_k(b_1),$$

$$|B(A)| = \sum_{i=0}^{t-1} F_n^i(k_1, k_2, \dots, k_n) + P_t(a_1).$$

REFERENCES

- D.L. Wang and P. Wang, "External configurations on a discrets torus and generalization of the generalized Macauley theorem", SIAM J. Appl. Math., vol. 33, no. 1, pp. 55--59, 1977.
- [2] В.М. Караханян, "Дискретная изопериметрическая задача на многомерном торе". *ДАН Арм. ССР*, Ереван, Армения, т. 74, ном.
- V. Karakhanyan, "Some Subset Properties Of The Multidimensional Multivalued Discrete Torus", International Journal "Information Theories and Applications", vol. 17, no. 2, pp. 160--175, 2010.
- Л.А. Асланян, "Изопериметрическая задача и смежные экстремальные задачи для дискретных пространств", Проблемы кибернетики, вып. 36, Москва, стр. 85--127, 1979.