
Elements of an Analysis of the Category with
Computable Functions as Arrows

Arsen Mokatsian

Institute for Informatics and Automation Problems
of the National Academy of Sciences of the RA

Yerevan, Armenia
e-mail: arsenmokatsian@gmail.com

Khachatur Barseghyan
Siemens Industry Software

Yerevan, Armenia
e-mail: khachatur.barseghyan@outlook.com

Abstract—Let 𝑵 be the set of nonnegative integers. The
article defines a certain structure with computable subsets of 𝑵
as objects and partial computable functions (having computable
domain) as arrows. It is proved that this structure is a category
(namely, Npcomp). It is shown in what capacity the notions of
“co-product of two objects”, “product of two objects”, “cone for
given diagram”, and “limit of given diagram” are presented in
the category Npcomp. In particular, it is proved that the
co-product of two objects in this category is the joint of these two
objects.

Keywords—Category, partial computable functions,
computable sets.

I. INTRODUCTION
We will use the terminology of [1] and [2]. The

notions used in category theory and in this article can be
found in the works of [3],[4],[5].

In particular, we recall the following notations and
definitions:
Let 𝑁 be the set of nonnegative integers.
Let 𝒩 = {𝐴 ⊆ 𝑁}.

𝜏(𝑥, 𝑦) =
1
2 (𝑥

! + 2𝑥𝑦 + 𝑦! + 3𝑥 + 𝑦)

𝜏 is a computable one-one mapping of 𝑁 ×𝑁 onto 𝑁.
Let 𝜋"	and	𝜋! denote the inverse functions

𝜋"9𝜏(𝑥, 𝑦): = 𝑥 and 𝜋!9𝜏(𝑥, 𝑦): = 𝑦.
𝑓 ↾ 𝑥 denotes the restriction of 𝑓 to arguments 𝑦 <

𝑥,	 𝑓 ↾ 𝐴 denotes the restriction of 𝑓 to arguments 𝑦 ∈ 𝐴.
The identity function is characterised by the rule
𝑓(𝑥) 	= 	𝑥 . Each set 𝐴 has its own identity function,
called the identity function on A, denoted id#, the domain
of which is the set 𝐴. Thus the image of id# is also 𝐴, i.e.,
id#: 𝐴 ⟶ 𝐴. On the set-theoretic account, id# =
{〈𝑥, 𝑥〉: 𝑥 ∈ 𝐴} (see [3] §2.1).

Let 𝐴 join B, written 𝐴⊕ B, be {2𝑥:	𝑥 ∈ 𝐴} ∪	
{2𝑥 + 1:		𝑥 ∈ 𝐵}.

Axiomatic definition of a category. A category ℇ
comprises

1) a collection of things called ℇ-objects;
2) a collection of things called ℇ-arrows ;

3) operations assigning to each ℇ-arrow 𝑓 an
ℇ-object dom	𝑓 (the "domain" of 𝑓) and an
ℇ-object cod	𝑓 (the "codomain " of 𝑓). If
𝑎 = dom	𝑓 and 𝑏 = cod	𝑓 we display this
as

𝑓 ∶ 𝑎 → 𝑏		or 𝑎
				%				
O⎯⎯Q𝑏;

4) an operation assigning to each pair 〈g, 𝑓〉 of
ℇ-arrows with dom	g = cod	𝑓, an ℇ-arrow
g ∘ 𝑓 , the composite of 𝑓 and g , having
dom(g ∘ 𝑓) = dom	𝑓 and cod(g ∘ 𝑓) =
cod	g, i.e. g ∘ 𝑓:	dom	𝑓 →	cod g, and such
that the following condition is obtained:

Associative Law: Given the configuration
𝑎
					%				
O⎯⎯Q𝑏

					&				
O⎯⎯Q𝑐

					'				
O⎯⎯Q𝑑	 of ℇ -objects and ℇ -arrows, then ℎ ∘ (g ∘ 𝑓) =	

(ℎ ∘ g) ∘ 𝑓.
The associative law asserts that a diagram having the

form

always commutes;
5) an assignment to each ℇ-object 𝑏 of an ℇ-arrow

1(∶ 𝑏 → 𝑏, called the identity arrow on 𝑏, such
that

Identity Law: For any ℇ -arrows 𝑓	 ∶ 	𝑎	 → 𝑏 and
g ∶ 𝑏 → 𝑐, 1(∘ 𝑓 = 𝑓, and g ∘ 1(= g, i.e., the diagram

commutes.

A Set denotes a category in which the objects are all sets
and the arrows are all functions between sets (see [3] §2.3).

𝑓 1(
g

𝑎							𝑓						
												XXXXXXXXXXXX⃗

𝑏

𝑏	
											
					g							XXXXXXXXXXXXXXX⃗ 	𝑐

g 𝑓 g

𝑎										𝑓							
															XXXXXXXXXXXXXXX⃗

	𝑏

𝑑		
										'											
Z⎯⎯⎯⎯⎯⎯[𝑐

g

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_28 115

II. PRELIMINARIES
A set function 𝑓 ∶ 𝐴 → 𝐵 is said to be injective, or one-one

when no two distinct inputs give the same output, i.e. for
inputs 𝑥, у	 ∈ 	𝐴, if 𝑓(𝑥) = 𝑓(𝑦), then 𝑥 = 𝑦.

A set function 𝑓 ∶ 𝐴 → 𝐵 is onto, or surjective, if the
codomain В is the range of 𝑓, i.e., for each 𝑦 ∈ В there is
some 𝑥 ∈ 𝐴 such that 𝑦 = 𝑓(𝑥),	 i.e., every member of 𝐵 is
an output for 𝑓.

A function that is both injective and subjective is called
bijective.

A function that is related to 𝑓 as follows:
g ∘ 𝑓 = 𝑖𝑑# and 𝑓 ∘ g = 𝑖𝑑)

is said to be an inverse of 𝑓. This is an essentially arrow-
theoretic idea, and leads to a new definition.

An ℇ-arrow 𝑓 ∶ 𝑎 → 𝑏 is iso, or invertible, in ℇ if there is
an ℇ-arrow g ∶ 𝑏 → 𝑎, such that g ∘ 𝑓 = 1*	and	𝑓 ∘ g = 1(.

Objects 𝑎 and 𝑏	are isomorphic in ℇ, denoted 𝑎 ≅ 𝑏, if
there is an ℇ-arrow 𝑓 ∶ 𝑎 → 𝑏 that is iso in ℇ, i.e., 𝑓 ∶ 𝑎 ≅ 𝑏.

Definition. A product in a category ℇ of two objects 𝑎 and

𝑏 is an ℇ -object 𝑎 × 𝑏 together with a pair (𝑝𝑟*: 𝑎 × 𝑏 →
𝑎, 	𝑝𝑟(: 𝑎 × 𝑏 → 𝑏) of ℇ -arrows such that for any pair of
ℇ-arrows of the form (𝑓 ∶ 𝑐 → 𝑎, g ∶ 𝑐 → 𝑏), there is exactly
one arrow 〈𝑓,g〉: 𝑐 → 𝑎 × 𝑏 making

commute, i.e., such that 𝑝𝑟* ∘ 〈𝑓,g〉 = 𝑓 and 𝑝𝑟(∘ 〈𝑓,g〉 =g.
〈𝑓,g〉	 is the product arrow of 𝑓 and g with respect to the
projections		𝑝𝑟*, 𝑝𝑟(.

Notice that product of 𝑎	and 𝑏	 is only defined up to
isomorphism (see [3] §3.8).

If Σ is a statement in the basic language of categories, the

dual of Σ , Σ+,, is the statement obtained by replacing "dom"
by "cod", "cod" by "dom" and "ℎ = g ∘ 𝑓"			by		
"ℎ = 𝑓 ∘ g". Thus, all arrows and composites referred to by Σ
are reversed in Σ+,. The notion or construction described by
Σ+, is said to be dual to that described by Σ .

From a given category ℇ , we construct its dual or
opposite category ℇ+, as follows:

ℇ and ℇ+, have the same objects. For each ℇ -arrow
𝑓 ∶ 𝑎 → 𝑏 we introduced an arrow 𝑓+,: 𝑏 → 𝑎 in ℇ+, , these
being all and only the arrows in ℇ+,. The composite
𝑓+, ∘ g+, is defined precisely when g ∘ 𝑓 is defined in
ℇ	and	has

𝑓+, ∘ g+, = (g ∘ 𝑓)+,. Note that dom	(𝑓+,) = cod	𝑓 and
cod(𝑓+,) = dom	𝑓.

The dual notion to "product" is the co-product or sum of
objects, which, by the duality principle we directly define as
follows.

Definition. A co-product of ℇ-objects 𝑎 and 𝑏 is an
ℇ- object 𝑎 + 𝑏 together with a pair (𝑖*: 𝑎 → 𝑎 + 𝑏,	
𝑖(: 𝑏 → 𝑎 + 𝑏) of ℇ-arrows such that for any pair of ℇ-arrows
of the form (𝑓 ∶ 𝑎 → 𝑐,	g ∶ 𝑏 → 𝑐), there is exactly one arrow
[𝑓,g]: 𝑎 + 𝑏 → 𝑐 making

commute, i.e. such that [𝑓,g] ∘ 𝑖* = 𝑓	and [𝑓,g] ∘ 𝑖(=g.

[𝑓,g]	is called the co-product arrow of 𝑓 and g with respect
to the injections 𝑖* and 𝑖((see [3] §3.9).

A cone for diagram 𝐷 consists of an ℇ-object 𝑐 together
with an ℇ-arrow 𝑓-: 𝑐 → 𝑑- 	for each object 𝑑- 	in 𝐷, such that

commutes whenever g is an arrow in the diagram 𝐷. We use
the symbolism {𝑓-: 𝑐 → 𝑑-} to denote a cone for 𝐷.

A limit for a diagram D is a D-cone {𝑓-: 𝑐 → 𝑑-} with the
property that for any other 𝐷-cone {𝑓′- ∶ 𝑐′ → 𝑑-}, there is
exactly one arrow 𝑓: 𝑐′ → 𝑐 such

commutes for every object 𝑑- in 𝐷.

This limiting cone, when it exists, is said to have the
universal property with respect to 𝐷-cones. It is universal
amongst such cones – any other 𝐷-cone factors uniquely
through it as the last diagram. A limit for diagram 𝐷 is
unique up to isomorphism: - if {𝑓-: 𝑐 → 𝑑-} and {𝑓.-: 𝑐′ →
𝑑-} are both limits of 𝐷, then the unique commuting arrow
𝑓: 𝑐.	---→	𝑐 above is iso (its inverse is the unique
commuting arrow 𝑐	---→	𝑐′ whose existence follows from
the fact that j𝑓.-: 𝑐

. → 𝑑-k	is	a	limit) (see [3] §3.11).

Definition. A pullback of a pair 𝑎
						%						
O⎯⎯⎯Q	𝑐	

										g					
Z⎯⎯⎯⎯[𝑏 of

ℇ-arrows with a common codomain is a limit in ℇ for the
diagram

A cone for this diagram consists of three arrows 𝑓′, ℎ,
g', such that

𝑎
										%							
O⎯⎯⎯⎯⎯Q 	𝑐

b
g

c

𝑑- 		
										g									
O⎯⎯⎯⎯⎯Q

	
		𝑑0

𝑓0 𝑓-

𝑐′																						𝑐

𝑑-

𝑓

𝑓- 𝑓′-

𝑎	
											,1!							Z⎯⎯⎯⎯⎯⎯⎯[

	
	𝑎 × 𝑏	

								,1#							O⎯⎯⎯⎯⎯⎯Q
	

	𝑏

c

〈𝑓,g〉
𝑓 g

c

𝑎	
								-!									O⎯⎯⎯⎯⎯Q 	𝑎 + 𝑏	

												-#							Z⎯⎯⎯⎯⎯⎯[
	

	𝑏

[𝑓,g]
g 𝑓

𝑓+, g+,

116

commutes. But this requires that ℎ = g ∘ 𝑓. = 𝑓 ∘ g..
So, it can be said that a cone is a pair 	𝑎

				g'			
Z⎯[𝑑	

			%'			
O⎯Q 	𝑏 of

ℇ-arrows such that the "square"

commutes, i.e., 𝑓 ∘ g'=g ∘ 𝑓′.

Thus, we have, by the definition of universal cone,
that a pullback of the pair 𝑎

			%				
O⎯Q	𝑐	

					g			
Z⎯[𝑏 in ℇ is a pair

of ℇ-arrows pair 𝑎 	
				g'			
Z⎯[𝑑

			%'			
O⎯Q 	𝑏 such that

(i) 𝑓 ∘ g'=g ∘ 𝑓′ , and

(ii) whenever 𝑎
						h			
Z⎯⎯[𝑒	

				0					
O⎯⎯Q 	𝑏 are such that 𝑓 ∘ ℎ=g ∘ 𝑗,

then

there is exactly one ℇ-arrow 𝑘 ∶ 𝑒 ⇢ 𝑑 such that ℎ =
g′ ∘ 𝑘 and 𝑗 = 𝑓′ ∘ 𝑘.

The inner square (𝑓,	g, 𝑓′	,	g′) of the diagram is called
a pullback square, or Cartesian square. We also say that
	𝑓′	arises by pulling back f along g, and g' arises by
pulling back g along 𝑓	(see [3] §3.13).	

The dual of a pullback of a pair of arrows with a
common codomain is a pushout of the two arrows with a
common domain:
a pushout of 𝑏

						%			
Z⎯⎯[𝑎	

						g					
O⎯⎯Q 	𝑐 is a pushout for the diagram

In Set it is obtained by forming the disjoint union 𝑏	 + 𝑐
and then identifying 𝑓(𝑥) with g(𝑥) , for each 𝑥 ∈ 𝑎
(see [3] §3.14).

III. RESULTS
Definition of 𝑵𝒑𝒄𝒐𝒎𝒑 category
The objects are computable subsets of 𝑁 (i.e., computable

elements of 𝒩).

The arrows are partial computable functions, the domains
of which are computable sets.

Composition. With the above definition of objects and
arrows, the associative law is satisfied, i.e., if	
𝑎
					%				
O⎯⎯Q𝑏

				&						
O⎯⎯⎯Q 𝑐

					'				
O⎯⎯Q𝑑, then ℎ ∘ (g ∘ 𝑓) = (ℎ ∘ g) ∘ 𝑓.

Identity arrow. The identity arrow 1#	 on the object
𝐴		of the category	𝑁𝑝𝑐𝑜𝑚𝑝 is defined to be the identity
function on 𝐴. The above definition of arrows allows us to
assert that the identity function satisfies the identity law.

Proposition 1: In category 𝑁𝑝𝑐𝑜𝑚𝑝, the co-product of 𝐴 and
𝐵 is their joint, 𝐴⊕𝐵.

Proof: Let 𝑖#(𝑥) = 2𝑥, 𝑖)(𝑥) = 2𝑥 + 1.	

Suppose we are given some other set 𝐶	with a pair of maps
𝑓: 𝐴 → 𝐶,	g: 𝐵 → 𝐶. Then we define [𝑓,g]:	by	the	rule	

[𝑓,g](𝑥) = �
𝑓(𝑚),		if		(∃𝑚)(𝑥 = 2𝑚)								
	g(𝑚),		if		(∃𝑚)(𝑥 = 2𝑚 + 1).

Then we have [𝑓,g] ∘ 𝑖#(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐴 and
[𝑓,g] ∘ 𝑖)(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝐵 and so [𝑓,g] ∘ 𝑖# = 𝑓
and the above diagram commutes.

Now we will show that [𝑓,g] is the only arrow that
can make the diagram commute. For if 𝑓(𝑥) = 𝑧 and
g(𝑥) = 𝑦, then since [𝑓,g] ∘ 𝑖# = 𝑓, must be
[𝑓,g] ∘ 𝑖#(𝑥) = 𝑓(𝑥), i.e. 𝑧 = 𝑓(𝑥). Similarly, if
[𝑓,g] ∘ 𝑖) = g we must have 𝑦 = g(𝑥).

Besides, since the functions 𝑓,		g,	𝑖# , 𝑖) 	 are partial
computable functions with computable domains, the function
[𝑓,g] defined in the above way is also a partial computable
function with a computable domain.�

Proposition 2: In category 𝑁𝑝𝑐𝑜𝑚𝑝, the product of 𝐴 and
𝐵	is the set 𝜏(𝐴 × 𝐵) = {𝜏(𝑥, 𝑦):	𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.

Proof: Given sets A and B and the functions 𝜋"	and	
𝜋! presented in the Introduction generate maps
𝜋�": 𝜏(𝐴 × 𝐵) → 𝐴 and 𝜋�!: 𝜏(𝐴 × 𝐵) → 𝐵 (where

𝜋�" = 𝜋" ↾ 𝜏(𝐴 × 𝐵)	and		𝜋�! = 𝜋! ↾ 𝜏(𝐴 × 𝐵)).
So 𝜋�"(𝜏(𝑥, 𝑦)) = 𝑥, 	𝜋� !(𝜏(𝑥, 𝑦)) = 𝑦.

Suppose we are given some other set 𝐶	with a pair of maps
𝑓: 𝐶 → 𝐴,	g: 𝐶 → 𝐵. Then we define 𝑝: 𝐶 → 𝜏(𝐴 × 𝐵)

by the rule 𝑝(𝑥) = 𝜏(𝑓(𝑥),g(𝑥)).
Then we have 𝜋�"9𝑝(𝑥): = 𝑓(𝑥) and 𝜋�!9𝑝(𝑥): = g(𝑥), for
all 𝑥 ∈ 𝐶, so 𝜋�" ∘ 𝑝 = 𝑓 and 𝜋�! ∘ 𝑝 = g. Thus, the above
diagram commutes.

𝑑	
								%$							
O⎯⎯⎯⎯⎯Q	 b

g

	
		

						𝑓					XXXXXXXXXXXXXX⃗ 				 a c

h g'

𝑑
									%.							
O⎯⎯⎯⎯⎯Q	 b

g

	
		

						𝑓					XXXXXXXXXXXXXX⃗ 				 a c

g'

𝑑
																								
*⎯⎯⎯⎯⎯⎯, 	𝑏 𝑓′

g

e

g' h

k
j

C

𝐴	
								-%										O⎯⎯⎯⎯⎯Q 𝐴⨁𝐵	

												-&							Z⎯⎯⎯⎯⎯⎯[
	

	𝐵

[𝑓,g]
g 𝑓

𝐴	
									3 					
Z⎯⎯⎯⎯⎯[

	
𝜏(𝐴 × 𝐵)	

3 				
O⎯⎯⎯⎯Q
	

	𝐵

C

𝑝
𝑓 g

𝑎
												%									
O⎯⎯⎯⎯⎯⎯Q 	𝑐

𝑎
									g								
O⎯⎯⎯⎯Q 	𝑐

b

f

117

The uniqueness of arrow 𝑝 is proved approximately the
same way as in Proposition 1.

In addition, since the functions 𝑓,		g,	𝜋�", 𝜋�!	 are partial
computable functions with computable domains, the function
𝑝	 defined in the above way is also a partial computable
function with a computable domain.�

Theorem 1: In category 𝑁𝑝𝑐𝑜𝑚𝑝, the pullback

	

of two arrows 𝑓 and g is defined by putting

𝐷 = {𝜏(𝑥, 𝑦) ∈ 𝐴, 𝑦 ∈ 𝐵,		and	𝑓(𝑥) = g(𝑦)}	
with 𝑓′ and g' as the projections:

𝑓.(𝜏(𝑥, 𝑦)) = 𝑦	

g′(𝜏(𝑥, 𝑦)) = 𝑥.	

Proof: As can be seen from the definition of functions 𝑓′,
g' (in the formulation of the theorem)

𝑓 ∘ g'=g ∘ 𝑓′ .

Now, suppose we are given some other set 𝑒		with a pair
of maps ℎ :𝑒 → 𝑎, 𝑗 :𝑒 → 𝑏. Then we define k :𝑒 → 𝑑 by the
rule 𝑘(𝑥) = 𝜏(ℎ(𝑥), 𝑗(𝑥)).

Let us prove that the outer square commutes.

Then we have 𝑓′(𝑘(𝑥)) = 𝑗(𝑥), and g′(𝑘(𝑥)) = ℎ(𝑥) for all
𝑥 ∈ 𝑒, so 𝑓. ∘ 𝑘 = 𝑗, g. ∘ 𝑘 = ℎ (remind that in 𝑁𝑝𝑐𝑜𝑚𝑝
category, 𝑒, 𝑑, 𝑎, 𝑏	are	sets).

Function 𝑘 is exactly one for which the last diagram
commutes. Indeed, if 𝑘(𝑥) = 𝜏(𝑦, 𝑥), then since 𝑓. ∘ 𝑘 = 𝑗,
then 𝑓.9𝑘(𝑥): = 𝑗(𝑥), i.e., 𝑦 = 𝑗(𝑥). Similarly, if
g. ∘ 𝑘 = ℎ , then 𝑧 = ℎ(𝑥).

Moreover, since the functions ℎ, 𝑗, 𝑓.,	g′ are partial
computable functions with computable domains, the function
𝑘 defined in the above way is also a partial computable
function with a computable domain.�

REFERENCES

[1] R. I. Soare, Recursively Enumerable Sets and Degree: A study of
computable functions and computably generated sets, Perspectives in
MathematicalLogic, Springer-Verlag, 1987.

[2] H. Rogers Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill, 1967.

[3] R. Goldblatt, TOPOI, The Categorial Analysis of Logic, Revised
edition North-Holland, New York,1984.

[4] M. A. Arbib and E.G. Manes, Arrows, Structures, and Functions,
Academic press, 1975.

[5] T. Leinster, Basic Category Theory, Cambridge Studies in Advanced
Mathematics, vol. 143, ArXiv version, 2016.

𝑑
																				
*⎯⎯⎯⎯⎯, 	𝑏

a

g'

e

h

k
j

𝐷
								%.						
O⎯⎯⎯⎯Q 	𝐵

g g'

𝐴	
		

						𝑓					XXXXXXXXXXXXXX⃗ 	𝐶		

118

