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Abstract—Let 𝑵  be the set of nonnegative integers. The 
article defines a certain structure with computable subsets of 𝑵 
as objects and partial computable functions (having computable 
domain) as arrows. It is proved that this structure is a category 
(namely, Npcomp). It is shown in what capacity the notions of 
“co-product of two objects”, “product of two objects”, “cone for 
given diagram”, and “limit of given diagram” are presented in 
the category Npcomp. In particular, it is proved that the  
co-product of two objects in this category is the joint of these two 
objects. 

Keywords—Category, partial computable functions, 
computable sets. 

 

I. INTRODUCTION  
We will use the terminology of [1] and [2]. The 

notions used in category theory and in this article can be 
found in the works of [3],[4],[5].  

In particular, we recall the following notations and 
definitions: 
Let 𝑁 be the set of nonnegative integers. 
Let 𝒩 = {𝐴 ⊆ 𝑁}.  

𝜏(𝑥, 𝑦) =
1
2 (𝑥

! + 2𝑥𝑦 + 𝑦! + 3𝑥 + 𝑦) 

𝜏  is a computable one-one mapping of 𝑁 ×𝑁 onto 𝑁. 
Let 𝜋"	and	𝜋! denote the inverse functions  

𝜋"9𝜏(𝑥, 𝑦): = 𝑥 and 𝜋!9𝜏(𝑥, 𝑦): = 𝑦. 
𝑓 ↾ 𝑥  denotes the restriction of 𝑓 to arguments 𝑦 <

𝑥,	 𝑓 ↾ 𝐴 denotes the restriction of 𝑓 to arguments 𝑦 ∈ 𝐴. 
The identity function is characterised by the rule 
𝑓(𝑥) 	= 	𝑥 . Each set 𝐴  has its own identity function, 
called the identity function on A, denoted  id#, the domain 
of which is the set 𝐴. Thus the image of id# is also 𝐴, i.e., 
id#: 𝐴 ⟶ 𝐴.  On the set-theoretic account, id# =
{〈𝑥, 𝑥〉: 𝑥 ∈ 𝐴} (see [3] §2.1). 

Let  𝐴  join B, written  𝐴⊕ B, be {2𝑥:	𝑥 ∈ 𝐴} ∪	
{2𝑥 + 1:		𝑥 ∈ 𝐵}. 

Axiomatic definition of a category.  A category ℇ 
comprises 

1) a collection of things called  ℇ-objects; 
2) a collection of things called ℇ-arrows ; 

3) operations assigning to each ℇ-arrow 𝑓 an 
ℇ-object dom	𝑓 (the "domain" of 𝑓) and an 
ℇ-object cod	𝑓 (the "codomain " of 𝑓). If 
𝑎 = dom	𝑓  and 𝑏 = cod	𝑓 we display this 
as 

𝑓 ∶ 𝑎 → 𝑏		or  𝑎
				%				
O⎯⎯Q𝑏; 

4) an operation assigning to each pair 〈g, 𝑓〉 of  
ℇ-arrows with dom	g = cod	𝑓,    an ℇ-arrow 
g ∘ 𝑓 , the composite of  𝑓  and g , having 
dom(g ∘ 𝑓) = dom	𝑓  and cod(g ∘ 𝑓) =
cod	g, i.e. g ∘ 𝑓:	dom	𝑓 →	cod g, and such 
that the following condition is obtained: 

Associative Law:  Given the configuration 
𝑎
					%				
O⎯⎯Q𝑏

					&				
O⎯⎯Q𝑐

					'				
O⎯⎯Q𝑑	 of  ℇ -objects and ℇ -arrows, then  ℎ ∘ (g ∘ 𝑓) =	

(ℎ ∘ g) ∘ 𝑓. 
The associative law asserts that a diagram having  the 

form 
 
 
 
 

always commutes;   
5) an assignment to each ℇ-object 𝑏 of an  ℇ-arrow 

1( ∶ 𝑏 → 𝑏, called the identity arrow on 𝑏, such 
that 

Identity Law: For any ℇ -arrows 𝑓	 ∶ 	𝑎	 → 𝑏  and  
g ∶ 𝑏 → 𝑐,  1( ∘ 𝑓 = 𝑓,  and  g ∘ 1( = g, i.e., the diagram  
 

 

 

 

commutes. 

A Set denotes a category in which the objects are all sets 
and the arrows are all functions between sets (see [3] §2.3). 

𝑓 1( 
g 

𝑎							𝑓						
												XXXXXXXXXXXX⃗

𝑏  

𝑏	
											
					g							XXXXXXXXXXXXXXX⃗ 	𝑐  

 

g 𝑓 g 

𝑎										𝑓							
															XXXXXXXXXXXXXXX⃗

	𝑏  

𝑑		
										'											
Z⎯⎯⎯⎯⎯⎯[ 	𝑐  

 

  

g 
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II. PRELIMINARIES 
A set function 𝑓 ∶ 𝐴 → 𝐵 is said to be injective, or one-one 

when no two distinct inputs give the same output, i.e. for 
inputs 𝑥, у	 ∈ 	𝐴, if  𝑓(𝑥) = 𝑓(𝑦), then  𝑥 = 𝑦.  

A set function 𝑓 ∶ 𝐴 → 𝐵  is onto, or surjective, if the 
codomain В is the range of 𝑓,  i.e., for each 𝑦 ∈ В there is 
some 𝑥 ∈ 𝐴  such that  𝑦 = 𝑓(𝑥),	  i.e., every member of 𝐵 is 
an output for 𝑓.  

A function that is both injective and subjective is called 
bijective. 

A function that is related to 𝑓 as follows:  
g ∘ 𝑓 = 𝑖𝑑#  and  𝑓 ∘ g = 𝑖𝑑) 

is said to be an inverse of  𝑓. This is an essentially arrow-
theoretic idea, and leads to a new definition. 

An ℇ-arrow 𝑓 ∶ 𝑎 → 𝑏 is iso, or invertible, in  ℇ  if there is 
an ℇ-arrow g ∶ 𝑏 → 𝑎, such that g ∘ 𝑓 = 1*	and	𝑓 ∘ g = 1(.  

Objects 𝑎 and 𝑏	are isomorphic in  ℇ, denoted 𝑎 ≅ 𝑏, if 
there is an ℇ-arrow 𝑓 ∶ 𝑎 → 𝑏 that is iso in  ℇ, i.e., 𝑓 ∶ 𝑎 ≅ 𝑏.  

 
Definition. A product in a category ℇ of two objects 𝑎 and 

𝑏  is an ℇ -object 𝑎 × 𝑏  together with a pair (𝑝𝑟*: 𝑎 × 𝑏 →
𝑎, 	𝑝𝑟(: 𝑎 × 𝑏 → 𝑏)  of ℇ -arrows such that for any pair of  
ℇ-arrows of the form (𝑓 ∶ 𝑐 → 𝑎, g ∶ 𝑐 → 𝑏), there is exactly 
one arrow 〈𝑓,g〉: 𝑐 → 𝑎 × 𝑏  making 

    
 
 
 

 
 
 
commute, i.e., such that 𝑝𝑟* ∘ 〈𝑓,g〉 = 𝑓 and 𝑝𝑟( ∘ 〈𝑓,g〉 =g.  
〈𝑓,g〉	 is the product arrow of 𝑓  and g with respect to the 
projections		𝑝𝑟*, 𝑝𝑟(. 

Notice that product of  𝑎	and 𝑏	  is only defined up to 
isomorphism (see [3] §3.8). 

 
If Σ is a statement in the basic language of categories, the 

dual of  Σ , Σ+,, is the statement obtained by replacing "dom" 
by "cod", "cod" by "dom" and "ℎ = g ∘ 𝑓"			by		
"ℎ = 𝑓 ∘ g". Thus, all arrows and composites referred to by Σ  
are reversed in Σ+,. The notion or construction described by 
Σ+, is said to be dual to that described  by Σ .  

From a given category  ℇ  , we construct its dual or 
opposite category ℇ+, as follows: 

ℇ  and  ℇ+,  have the same objects. For each  ℇ -arrow  
𝑓 ∶ 𝑎 → 𝑏 we introduced an arrow 𝑓+,: 𝑏 → 𝑎 in ℇ+, , these 
being all and only the arrows in ℇ+,.  The composite  
𝑓+, ∘ g+,  is defined precisely when g ∘ 𝑓  is defined in 
ℇ	and	has 

 
 
 
 

 
𝑓+, ∘ g+, = (g ∘ 𝑓)+,. Note that dom	(𝑓+,) = cod	𝑓 and 
cod(𝑓+,) = dom	𝑓. 

The dual notion to "product" is the co-product or sum of 
objects, which, by the duality principle we directly define as 
follows. 

Definition.  A  co-product of  ℇ-objects  𝑎  and 𝑏 is an   
ℇ- object 𝑎 + 𝑏  together with a pair ( 𝑖*: 𝑎 → 𝑎 + 𝑏,	
𝑖(: 𝑏 → 𝑎 + 𝑏) of ℇ-arrows such that for any pair of ℇ-arrows 
of the form (𝑓 ∶ 𝑎 → 𝑐,	g ∶ 𝑏 → 𝑐), there is exactly one arrow 
[𝑓,g]: 𝑎 + 𝑏 → 𝑐 making 

 
 
 
 
 
 
 
commute, i.e. such that [𝑓,g] ∘ 𝑖* = 𝑓	and [𝑓,g] ∘ 𝑖( =g. 

[𝑓,g]	is called the co-product arrow of 𝑓 and g with respect 
to the injections 𝑖* and 𝑖(	(see [3] §3.9). 

A cone for diagram 𝐷 consists of an ℇ-object 𝑐 together 
with an ℇ-arrow 𝑓-: 𝑐 → 𝑑- 	for each object 𝑑- 	in 𝐷, such that 

 
 
 
 
 

 
commutes whenever g is an arrow in the diagram 𝐷. We use 
the symbolism {𝑓-: 𝑐 → 𝑑-} to denote a cone for 𝐷. 

A limit for a diagram D is a D-cone {𝑓-: 𝑐 → 𝑑-} with the 
property that for any other 𝐷-cone {𝑓′- ∶ 𝑐′ → 𝑑-}, there is 
exactly one arrow 𝑓: 𝑐′ → 𝑐  such 

 
 
 
 
 

 

commutes for every object 𝑑- in 𝐷. 

This limiting cone, when it exists, is said to have the 
universal property with respect to 𝐷-cones. It is universal 
amongst such cones – any other 𝐷-cone factors uniquely 
through it as the last diagram. A limit for diagram 𝐷  is 
unique up to isomorphism: - if {𝑓-: 𝑐 → 𝑑-} and {𝑓.-: 𝑐′ →
𝑑-} are both limits of  𝐷, then the unique commuting arrow 
𝑓: 𝑐.	---→	𝑐  above is iso (its inverse is the unique 
commuting arrow 𝑐	---→	𝑐′ whose existence follows from 
the fact that j𝑓.-: 𝑐

. → 𝑑-k	is	a	limit) (see [3] §3.11). 

Definition. A pullback of a pair  𝑎
						%						
O⎯⎯⎯Q	𝑐	

										g					
Z⎯⎯⎯⎯[ 	𝑏  of  

ℇ-arrows  with a common codomain is a limit in ℇ for the 
diagram 

 
 
 
 
   

 
 
A cone for this diagram consists of three arrows 𝑓′, ℎ, 
g', such that  

 

𝑎
										%							
O⎯⎯⎯⎯⎯Q 	𝑐 

b 
g 

c 

𝑑- 		
										g									
O⎯⎯⎯⎯⎯Q

	
		𝑑0 

𝑓0 𝑓- 

𝑐′																						𝑐 

𝑑- 
 

𝑓 

𝑓- 𝑓′- 

𝑎	
											,1!							Z⎯⎯⎯⎯⎯⎯⎯[

	
	𝑎 × 𝑏	

								,1#							O⎯⎯⎯⎯⎯⎯Q
	

	𝑏  

c 

〈𝑓,g〉 
𝑓 g 

c 

𝑎	
								-!									O⎯⎯⎯⎯⎯Q 	𝑎 + 𝑏	

												-#							Z⎯⎯⎯⎯⎯⎯[
	

	𝑏  

[𝑓,g] 
g 𝑓 

 

𝑓+, g+, 
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commutes. But this requires that ℎ = g ∘ 𝑓. = 𝑓 ∘ g..  
So, it can be said that a cone is a pair 	𝑎

				g'			
Z⎯[ 	𝑑	

			%'			
O⎯Q 	𝑏  of  

ℇ-arrows such that the "square" 
 
 
 
 
 
 

commutes, i.e., 𝑓 ∘ g'=g ∘ 𝑓′. 

Thus, we have, by the definition of universal cone, 
that a pullback of the pair  𝑎

			%				
O⎯Q	𝑐	

					g			
Z⎯[ 	𝑏   in ℇ is a pair 

of  ℇ-arrows pair  𝑎 	
				g'			
Z⎯[𝑑

			%'			
O⎯Q 	𝑏   such that 

(i) 𝑓 ∘ g'=g ∘ 𝑓′ , and 

(ii)  whenever  𝑎
						h			
Z⎯⎯[𝑒	

				0					
O⎯⎯Q 	𝑏    are such that 𝑓 ∘ ℎ=g ∘ 𝑗, 

then 
 

 
 
 
 
 
 

 
there is exactly one ℇ-arrow 𝑘 ∶ 𝑒 ⇢ 𝑑  such that ℎ =
g′ ∘ 𝑘 and 𝑗 = 𝑓′ ∘ 𝑘.  

The inner square (𝑓,	g, 𝑓′	,	g′) of the diagram is called 
a pullback square, or Cartesian square. We also say that 
	𝑓′	arises by pulling back f along g, and g' arises by 
pulling back g along 𝑓	(see [3] §3.13).	 

The dual of a pullback of a pair of arrows with a  
common codomain is a pushout of the two arrows with a  
common domain: 
a pushout of  𝑏

						%			
Z⎯⎯[	𝑎	

						g					
O⎯⎯Q 	𝑐   is a pushout for the diagram 

 
 
 

 
 

In Set it is obtained by forming the disjoint union 𝑏	 + 𝑐 
and then identifying  𝑓(𝑥)  with g(𝑥) , for each 𝑥 ∈ 𝑎 
(see [3] §3.14). 

 

III. RESULTS 
Definition of 𝑵𝒑𝒄𝒐𝒎𝒑 category 
The objects are computable subsets of  𝑁 (i.e., computable 

elements of  𝒩).  

The arrows are partial computable functions, the domains 
of which are computable sets. 

Composition. With the above definition of objects and 
arrows, the associative law is satisfied, i.e., if	
𝑎
					%				
O⎯⎯Q𝑏

				&						
O⎯⎯⎯Q 𝑐

					'				
O⎯⎯Q𝑑, then ℎ ∘ (g ∘ 𝑓) = (ℎ ∘ g) ∘ 𝑓. 

Identity arrow. The identity arrow 1#	 on the object 
𝐴		of the category	𝑁𝑝𝑐𝑜𝑚𝑝  is defined to be the identity 
function on  𝐴. The above definition of arrows allows us to 
assert that the identity function satisfies the identity law. 
 
Proposition 1:  In category 𝑁𝑝𝑐𝑜𝑚𝑝, the co-product of  𝐴 and 
𝐵 is their joint, 𝐴⊕𝐵. 

Proof: Let 𝑖#(𝑥) = 2𝑥, 𝑖)(𝑥) = 2𝑥 + 1.	  

 
 
 
 
 
 

Suppose we are given some other set 𝐶	with a pair of maps  
𝑓: 𝐴 → 𝐶,	g: 𝐵 → 𝐶. Then we define [𝑓,g]:	by	the	rule	 

[𝑓,g](𝑥) = �
𝑓(𝑚),		if		(∃𝑚)(𝑥 = 2𝑚)								
	g(𝑚),		if		(∃𝑚)(𝑥 = 2𝑚 + 1). 

Then we have [𝑓,g] ∘ 𝑖#(𝑥) = 𝑓(𝑥)  for all 𝑥 ∈ 𝐴  and 
[𝑓,g] ∘ 𝑖)(𝑥) = 𝑓(𝑥)  for all 𝑥 ∈ 𝐵  and so [𝑓,g] ∘ 𝑖# = 𝑓 
and the above diagram commutes. 

Now we will show that [𝑓,g] is the only arrow that 
can make the diagram commute. For if 𝑓(𝑥) = 𝑧  and 
g(𝑥) = 𝑦,  then since [𝑓,g] ∘ 𝑖# = 𝑓,  must be  
[𝑓,g] ∘ 𝑖#(𝑥) = 𝑓(𝑥),  i.e. 𝑧 = 𝑓(𝑥).  Similarly, if  
[𝑓,g] ∘ 𝑖) = g  we must have  𝑦 = g(𝑥). 

Besides, since the functions 𝑓,		g,	𝑖# , 𝑖) 	  are partial 
computable functions with computable domains, the function 
[𝑓,g]  defined in the above way is also a partial computable 
function with a computable domain.� 
 
Proposition 2:  In category 𝑁𝑝𝑐𝑜𝑚𝑝,  the product of  𝐴 and 
𝐵	is the set   𝜏(𝐴 × 𝐵) = {𝜏(𝑥, 𝑦):	𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}. 

Proof: Given sets A and B and the functions 𝜋"	and	
𝜋! presented in the Introduction generate maps 
𝜋�": 𝜏(𝐴 × 𝐵) → 𝐴  and 𝜋�!: 𝜏(𝐴 × 𝐵) → 𝐵  (where 

𝜋�" = 𝜋" ↾ 𝜏(𝐴 × 𝐵)	and		𝜋�! = 𝜋! ↾ 𝜏(𝐴 × 𝐵)). 
So 𝜋�"(𝜏(𝑥, 𝑦)) = 𝑥, 	𝜋� !(𝜏(𝑥, 𝑦)) = 𝑦.   

 

 

 

 
Suppose we are given some other set 𝐶	with a pair of maps  
𝑓: 𝐶 → 𝐴,	g: 𝐶 → 𝐵. Then we define 𝑝: 𝐶 → 𝜏(𝐴 × 𝐵) 

by the rule 𝑝(𝑥) = 𝜏(𝑓(𝑥),g(𝑥)). 
Then we have  𝜋�"9𝑝(𝑥): = 𝑓(𝑥) and  𝜋�!9𝑝(𝑥): = g(𝑥), for 
all  𝑥 ∈ 𝐶, so 𝜋�" ∘ 𝑝 = 𝑓 and  𝜋�! ∘ 𝑝 = g.    Thus, the above 
diagram commutes.  

𝑑	
								%$							
O⎯⎯⎯⎯⎯Q	 b 

g 

	
		

						𝑓					XXXXXXXXXXXXXX⃗ 				 a c 

h g' 

𝑑
									%.							
O⎯⎯⎯⎯⎯Q	 b 

g 

	
		

						𝑓					XXXXXXXXXXXXXX⃗ 				 a c 

g' 

𝑑
																								
*⎯⎯⎯⎯⎯⎯, 	𝑏 𝑓′ 

g 

e 

g' h 

k 
j 

C 

𝐴	
								-%										O⎯⎯⎯⎯⎯Q 𝐴⨁𝐵	

												-&							Z⎯⎯⎯⎯⎯⎯[
	

	𝐵  

[𝑓,g] 
g 𝑓 

𝐴	
									3 					
Z⎯⎯⎯⎯⎯[	

	
𝜏(𝐴 × 𝐵)	

3 				
O⎯⎯⎯⎯Q
	

	𝐵 

C 

𝑝 
𝑓 g 

𝑎
												%									
O⎯⎯⎯⎯⎯⎯Q 	𝑐 

𝑎
									g								
O⎯⎯⎯⎯Q 	𝑐 

b 

f 
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The uniqueness of arrow 𝑝 is proved approximately the 
same way as in Proposition 1. 

In addition, since the functions 𝑓,		g,	𝜋�", 𝜋�!	  are partial 
computable functions with computable domains, the function 
𝑝	  defined in the above way is also a partial computable 
function with a computable domain.� 
 
Theorem 1: In category 𝑁𝑝𝑐𝑜𝑚𝑝, the pullback  

	 
 
 

 

 
of two arrows 𝑓 and g is defined by putting 

𝐷 = {𝜏(𝑥, 𝑦) ∈ 𝐴, 𝑦 ∈ 𝐵,		and	𝑓(𝑥) = g(𝑦)}	
with 𝑓′ and g' as the projections: 

𝑓.(𝜏(𝑥, 𝑦)) = 𝑦	

g′(𝜏(𝑥, 𝑦)) = 𝑥.	

Proof: As can be seen from the definition of functions 𝑓′, 
g' (in the formulation of the theorem) 

𝑓 ∘ g'=g ∘ 𝑓′ . 

Now, suppose we are given some other set 𝑒		with a pair 
of maps ℎ :𝑒 → 𝑎, 𝑗 :𝑒 → 𝑏. Then we define k :𝑒 → 𝑑 by the 
rule 𝑘(𝑥) = 𝜏(ℎ(𝑥), 𝑗(𝑥)). 

Let us prove that the outer square commutes. 
 
 
 
 
 
 
 
 

Then we have 𝑓′(𝑘(𝑥)) = 𝑗(𝑥), and g′(𝑘(𝑥)) = ℎ(𝑥) for all 
𝑥 ∈ 𝑒, so 𝑓. ∘ 𝑘 = 𝑗,  g. ∘ 𝑘 = ℎ (remind that in 𝑁𝑝𝑐𝑜𝑚𝑝 
category, 𝑒, 𝑑, 𝑎, 𝑏	are	sets). 

Function 𝑘  is exactly one for which the last diagram 
commutes. Indeed, if 𝑘(𝑥) = 𝜏(𝑦, 𝑥), then since 𝑓. ∘ 𝑘 = 𝑗, 
then 𝑓.9𝑘(𝑥): = 𝑗(𝑥),  i.e., 𝑦 = 𝑗(𝑥).  Similarly, if  
g. ∘ 𝑘 = ℎ , then  𝑧 = ℎ(𝑥). 

Moreover, since the functions ℎ, 𝑗, 𝑓.,	g′  are partial 
computable functions with computable domains, the function 
𝑘   defined in the above way is also a partial computable 
function with a computable domain.� 
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