
TouIST in Progress
Hovhannes Sirunyan

French University in Armenia (UFAR)
Yerevan, Armenia

e-mail: I19.Sirunyan.Hovhannes@etud.ufar.am

Dominique Longin
IRIT, CNRS

Toulouse, France
e-mail: Dominique.Longin@irit.fr

Frederic Maris
IRIT, University of Toulouse

Toulouse, France
e-mail: Frederic.Maris@irit.fr

Sergei Soloviev
IRIT, University of Toulouse

Toulouse, France
e-mail: Sergei.Soloviev@irit.fr

Abstract—This work deals with logical formalization and
problem solving using automated solvers. The goal of TOUIST
is to allow the user to concentrate on the modeling of a given
problem without worrying about the technical details related
to the use of solvers: TOUIST provides a simple language
to generate logical formulas (as an input to solvers) from
a problem description, and allows to model many static or
dynamic combinatorial problems. All this can be very helpful as
a teaching support for logics and discrete mathematics. Users
may benefit from the regular improvements of SAT, QBF, or
SMT solvers to solve concrete problems efficiently, e.g., different
classes of planning tasks in Artificial Intelligence. We consider
recent updates to TOUIST dealing with modal logic (mostly due
to the first author), and discuss possible applications of TOUIST
in scientific research.

Keywords—TOUIST, logical solvers, finite modelling, modal
logic

I. INTRODUCTION

TOUIST (Toulouse Integrated Satisfiability Tool), an open
source project1, offers a high-level, friendly language for
logically modeling various problems in a very compact way
using already existing solvers to solve concrete logical and
combinatorial problems efficiently. It consists of a graphical
interface allowing interactive input of the target model; a
translation module from the input language of TOUIST into a
language directly understandable by different logical solvers;
a module for viewing models calculated by the solvers.

The flexible design of TOUIST makes it possible to use
TOUIST with different solvers. TOUIST can call on four
different types of solvers: SAT solvers (propositional logic
or logic of predicates on a finite domain), QBF (authorizing
quantification on propositional formulas), SMT (SAT Modulo
Theories for the treatment of problems involving numeric
calculus on integer or rational numbers) and MODAL (Modal
Logic). TOUIST is an open platform that may be progressively
extended.

As TOUIST comes with a well-written documentation, it
has become an important teaching support tool for logics
and discrete mathematics at the University of Toulouse [1].
However, the potential of TOUIST as a pedagogical and

1https://github.com/touist/touist

Fig. 1. TouIST architecture

research tool is far from being fully exploited. It is good
not only for creating “demos” but also for the verification of
examples (combinatorial in nature) that are too complex to be
reliably checked by a human researcher.

II. TOUIST CAPACITIES

Iterated connectives. Iterated conjunction and disjunction
(
∧

and
∨

) used in TOUIST may be seen as the universal
quantifier ∀ and the existential quantifier ∃ over finite sets
of values of indices. It permits even dependent quantification
over finite sets, since subsets of a given set may be used as
indices.

Static reasoning. TOUIST allows us to encode and solve
static generalized games such as the well known Sudoku for
an N × N grid (composed by N regions, i.e., grids of size
R×R with N = R2). In a similar way to Sudoku, the Binario
(binary game) consists in filling a grid by deduction with only
0s and 1s. In particular, we can encode the rule “each row and
column must contain as many 0s as 1s”.

Finding a Winning Strategy. The language of QBF allows
us to express naturally and concisely the existence of winning
strategies, which are described in [2]. In a typical 2-player
turn-based game, the moves of player 0 (for whom we are
searching a winning strategy) will be existentially quantified,
while those of his opponent will be universally quantified:
we look for the moves of player 0 that will lead him to

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_30 122

victory, regardless of his opponent’s moves. This scenario is
well presented in [3] using the Nim game.

Planning tasks. A planning task can be transformed into a
propositional formula with models corresponding to solution
plans (i.e., sequences or steps of actions starting from an initial
state and leading to a goal). These models can be found using
a SAT solver [4].

Beyond classical planning. TOUIST allows us to encode
and solve conformant planning tasks with QBF. It can also
be used to solve temporal planning tasks involving durative
actions, exogenous events, and temporally extended goals with
SMT encodings.

III. S5 EXTENSION

Let us explain in more detail the Modal Logic S5 extension
and its implementation. The state-of-the-art Cheetah [5] solver
for Modal Logic S5 has been added on top of the existing
solvers in TOUIST. It is now possible to solve Modal Logic
S5 problems in the most efficient way. We plan to add a similar
Modal Logic S4 extension.

Modal Logic S5 modalities can be used via:

• [](...) for�(...) in order to express necessity
• <> (...) for � (...) in order to express possibility

If the formula provided by the user is satisfiable, the possible
worlds and their valuations are returned to the user.

In TOUIST, we have further minimized the model obtained
from S5 Cheetah solver by eliminating possible worlds with
duplicated valuations.

Example 1:

• Real-World “Weather Scenario”.
1) If the sky is cloudy, then it is possibly going to rain.
2) If it is raining, then the ground is necessarily wet.
3) The ground is wet.

• Modal Logic.
1) C → �R
2) R → �W
3) W

• TOUIST code.
1) C =><> (R)
2) R => [](W)
3) W

• TOUIST result.
SAT
w1 : −R −W
w2 : −C −R W
worlds count: 2

• TOUIST result explanation.
On the first line, SAT was received, meaning the used
formulas are satisfiable in the Modal Logic S5. Then the
possible worlds with their corresponding valuations have
been returned, where w2 becomes the actual world, since
W was used in 3). (Here, “−R” indicates that R is false,
and the same applies to the other similar propositions).

IV. HIGHER ORDER LOGICS AND ALGEBRA

One of the useful features of TOUIST is the indexation of∧
and

∨
by the elements of finite sets. Combined with the

construction of powerset (also supported), it opens the way
to various applications to higher-order logics and algebra.

For example, predicates over a finite set X may be encoded
using indexation by subsets of X .

Using the Cartesian product of sets (defined in TOUIST)
and the powerset operation one may define n-ary predicates
as well.

Example 2: The program in TOUIST

$N = 3
$X=[1..$N]
$Y = powerset($X)
bigand $j in $Y:
(p($j)<=> (bigand $i in $j: q($i) end) and
(bigand $i in $X when (not ($i in $j)): not q($i) end))

end

will produce the formula∧
j∈Y

(pj ⇐⇒
∧
i∈j

qi ∧
∧

i∈X,i/∈j

¬qi).

It says that pj is true exactly on elements of j ⊂ [1..N] (qi
represents the value of pj on i).

Taking the subsets generated by the iterated powerset
construction as indices allows representing higher-order logic
formulas over finite sets.

The formula ∀P.P (x) in second-order logic (with P being
a predicate variable) is false. In TOUIST it can be represented
by

∧
j∈Y pj (with pj as above), which is false (in particular,

because ∅ is among the indices).
Remark 1: One may also recall that if we consider propo-

sitional formulas over a finite set S = {s1, ..., sk} of proposi-
tional variables, then the constant False may be replaced by
conjunction s∧s1∧...∧sk (with s /∈ S), preserving provability.
This is true for many systems of propositional calculus, and
not only for classical logic [8].

If necessary, one may add to the previous TOUIST code:
$Z = powerset($Y)
bigand $k in $Z when $k!=[]:
(S($k)<=> (bigor $j in $k: p($j) end))

end

The indices k are the families of subsets of Z (the empty
family is excluded), and S are defined as disjunctions of p
over subsets j ∈ k. This code represents the formula∧

k∈Z,k 6=∅

(S(k) ⇐⇒ (
∨
j∈k

p(j))).

This example shows how to obtain dependent types S(i).
Respectively,

∧
and

∨
with appropriate dependencies between

indices will represent dependent ∀ and ∃ over finite sets.
The same formula may be written down with quantifiers as

∀k ∈ Z, k 6= ∅.(S(k) ⇐⇒ ∃j ∈ k.p(j)).

(The scope of ∃ depends on k.)
Other examples of this kind, as well as examples represent-

ing various algebraic structures, may be found in [1], [3].

123

Finite models, especially those containing hierarchical struc-
tures and relations, are notoriously difficult for human analysis
and prone to error. Given that, we believe that TOUIST may
be especially useful as a research tool.

V. APPLICATIONS TO LINGUISTICS

Some applications of dependent types to linguistic analysis
were considered in [6].

For example, dependencies between linguistic quantifiers
(such as “all”, “some”, and “no one”) may influence the word
order in natural language phrases or affect their meaning inter-
pretation. Finite models (supported by TOUIST) are usually
sufficient there, and TOUIST may be used for illustrative
purposes or as a tool for analysis.

Example 3: J.R.R. Tolkien mentioned that in his childhood,
he was puzzled why one may say “A great green dragon”, but
to say “A green great dragon” is considered wrong ([7], p.31).

Here is an outline of the explanation.
• A (finite) nonempty set of all dragons D is given. It

contains a nonempty subset of green dragons G.
• In every nonempty subset S ⊆ D (including D), there

exists exactly one great dragon. This can be defined by
the relation Great(S, d).

• If Great(S, d) then d ∈ S. However, to be great in S
does not mean to be great in another subset S′ or in D.

• Thus, Great(G, d) ; Great(D, d). In particular, a great
green dragon is not necessarily a great dragon.

• And a green great dragon may not exist even if there
exists a great green dragon, or (if it does exist) may be
somewhat ridiculous (if the green color among dragons
is not appreciated).

How this may be formalized in TOUIST?

$D=[small, medium, large]
$P=powerset($D)
bigand $S in $P when $S!=[]:
(bigor $d in $S:
great($S,$d) and
(bigand $e in $D when $e!=$d :
not great($S,$e)
end)
end)
end

This program represents the formula

(∗)
∧

S⊆D,S 6=∅

(
∨
d∈S

greatS,d ∧ (
∧

e∈D,e6=d

¬greatS,e))

that claims the existence of a unique great dragon in every
S ⊆ D, S 6= ∅. With quantifiers and relation great(S, d):

∀S ⊆ D,S 6= ∅.∃d ∈ S.

(great(S, d) ∧ ∀e ∈ D, e 6= d.¬(great(S, e))).

We may add the line:

$Green=[small]

(the subset of green dragons contains only the “small”), and
then (*) implies that greatGreen,small is true.

Possible definitions of greatness, according to (*), include
the case when only “large” is great in D and “a green great
dragon” does not exist, while “a great green dragon” does.

The same reasoning may be reproduced using dependent
types as in [6].

VI. CONCLUSION

TOUIST makes it possible to easily use SAT, SMT, QBF,
and Modal Logic S5 solvers by abstracting away their internal
complexities and optimizations. By using TOUIST, one has to
focus only on their main problem without worrying about the
underlying solvers. The Modal Logic S5 extension in TOUIST
has opened a new window of opportunity to use logical
modalities, such as possible and necessary in TOUIST by
utilizing the state-of-the-art Modal Logic S5 solver Cheetah.
TOUIST displays strong sides of flexible, user-friendly in-

terfacing between specialized programs (solvers) and general-
purpose languages (logic) in teaching and research. In the near
future, we plan to update TOUIST to include other Modal
Logic solvers.

This work is currently under active development.
We consider extending TOUIST in the direction of game

semantics of Modal Logics and apply it to study Boolean
Games.

Technically speaking, Modal Logic solvers are based on
Kripke semantics. Kripke semantics for Intuitionistic Logic
is also well known. Many features of Modal, Intuitionistic,
Linear and other non-classical logics may be studied using
higher-order logics (cf. [8]). This direction of study is also on
the agenda.

A. Contact address

Sergei Soloviev, IRIT, University of Toulouse
118 route de Narbonne
31069 Toulouse, France
E-mail: Sergei.Soloviev@irit.fr
Phone: +(33) 675241341

ACKNOWLEDGMENT

The authors would like to thank Andreas Herzig for helpful
discussions.

REFERENCES

[1] O. Gasquet, D. Longin, E. Lorini, F. Maris, P. Regnier, S. Soloviev.
“TouIST, a Teacher-and Student-Friendly Language for Propositional
Logic and Discrete Mathematics”, Computer tools in education, no. 2,
pp. 13-25, 2021.

[2] D. Kroening, O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition. Texts in Theoretical Computer Science.
An EATCS Series, Springer, 2016.

[3] J. Fernandez, O. Gasquet, A. Herzig, D. Longin, E. Lorini, F. Maris, P.
Régnier, “TouIST: a Friendly Language for Propositional Logic and
More”, Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI), Yokohama, Japan, pp. 5240-5242, 2020.

[4] H.A. Kautz, B. Selman, “Planning as Satisfiability”, Proceedings of the
10th European Conference on Artificial Intelligence, ECAI 92. Vienna,
Austria, pp. 359-363, 1992.

124

[5] P. Huang, M. Liu, P. Wang, W. Zhang, F. Ma, J. Zhang, “Solving the
Satisfiability Problem of Modal Logic S5 Guided by Graph Coloring”,
Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI 2019, main track. Macao, China, pp. 1093-1100,
2019.

[6] Z. Luo Z., S. Soloviev, “Dependent Event Types”, WoLLIC20, LNCS
10388, Springer, 2017.

[7] H. Carpenter. J.R.R. Tolkien. A biography, Paperback edition. George
Allen and Unwin, 1978.

[8] S. Soloviev, “Reductions in Linear Logic”, Mathematical Structures in
Computer Science, vol. 5, pp. 483-499, 1995.

125

