
SSMMP: a Simple Protocol for Service Mesh
Stanislaw Ambroszkiewicz

Institute of Computer Science
University of Siedlce

Poland
e-mail: sambrosz@gmail.com, ORCID 0000-0002-8478-6703

Abstract—The specification of SSMMP (a simple Service
Mesh management protocol) is presented. It consists of the
formats of messages and the actions taken by senders and
recipients. The idea is that microservices of Cloud-Native
Applications should also be involved in configurations of their
communication sessions. It does not interfere with the business
logic of the microservices and requires only minor and generic
modifications of the microservices codebase, limited only to
network connections. This idea was also applied in Netflix [1],
however, at the software level. Thus, sidecars are not needed,
which aligns with the current trends, e.g., Cilium Service Mesh.
The formal specification of SSMMP is at GitHub [2], as well as
a prototype implementation for a simple social media CNApp.
It clearly proves that SSMMP should be viewed (by developers)
as an integral part of CNApps.

Keywords—Service Mesh, cloud-native applications, abstract
architecture, management protocols.

I. INTRODUCTION

Microservices (as a software architecture) were first devel-
oped from the service-oriented architecture (SOA) and the
concept of Web services (HTTP and WSDL) by Amazon in the
early 2000s. Hence the name AWS, which is short for Amazon
Web Services. Perhaps Amazon didn’t invent microservices
alone. However, AWS became the most successful application
of microservices for Cloud computing at that time.

Microservice architecture comprises fine-grained services
and lightweight protocols. The architecture inherited the HTTP
protocol (in the form of REST) from Web services as the basic
means of data transport between microservices. Cloud Native
Application (CNApp) is a distributed application composed of
microservices and deployed in the Cloud.

Microservices constitute an architectural pattern where a
complex and sophisticated application (CNApp) is made up of
a collection of fine-grained, self-contained microservices that
are developed and deployed independently of each other. They
communicate over the network using protocols in accordance
with the business logic of the application.

Once a collection of such microservices is composed and
orchestrated into a dynamic workflow, it can be deployed on
a cloud infrastructure.

Contemporary CNApps, developed and deployed by Big
Tech, consist of thousands of microservices. For example,
Uber [3]: “Each and every week, Uber’s 4,500 stateless
microservices are deployed more than 100,000 times by 4,000
engineers and many autonomous systems. These services are
developed, deployed, and operated by hundreds of individual

teams working independently across the globe. The services
vary in size, shape, and functionality; some are small and
used for internal operations, and some are large and used for
massive, real-time computation.”

The scale and complexity of CNApps force the transfor-
mation of microservices from an architectural style to an
organizational style, see Ibryam and Losio 2024 [4]. It is
called hyperspecialization of cloud services. “ A microservice
will no longer be just a single deployment unit or process
boundary but a composition of functions, containers, and cloud
constructs, all implemented and glued together in a single
language chosen by the developer. The future is shaping to be
hyperspecialized and focused on the developer-first cloud.”

Hence, a contemporary challenge in IT is to automate the
deployment and management of huge and complex CNApps.
This very automation is supposed to be designed by develop-
ers.

A. The problem and related work

How to automate the execution, scaling, and reconfiguration
of Cloud-Native Apps in a general way, but not at the software
level? Following Mulligan 2023 [5], this automation can be
accomplished by implementing a generic protocol that extends
the networking stack on top of TCP/IP.

The solution we propose is the Simple Service Mesh
Management Protocol (SSMMP) as a specification to be
implemented in a Cloud cluster. The specification consists
of the formats of messages exchanged between the parties
(actors) to the conversation of the protocol, and the actions
taken by the senders and receivers of the messages. The actors
are: the Manager, agents (residing on the nodes that make up
the cluster), and instances of microservices running on these
nodes. All these actors are almost the same as in Kubernetes
clusters. The main difference is the abstract architecture of
CNApps (introduced in Section II), and simple general rules
allowing for the automation of CNApps management.

Let’s take a brief look at the current work on this topic.
Service Mesh is an infrastructure for CNApps that allows
transparently adding security, observability and management
of network traffic between the microservices without interfer-
ing with the codebase of the microservices. Usually, Service
Mesh is built on top of Kubernetes and Docker.

Each microservice is equipped with its own local proxy
(called a sidecar). Sidecars can be automatically injected into

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_14 67



Kubernetes pods and can transparently capture all microservice
traffic. The sidecars form the data plane of Service Mesh.

The control plane of Service Mesh is (logically) one man-
ager responsible for configuring all proxies in the data plane
to route traffic between microservices and load balancing, and
to provide resiliency and security.

Linkerd [6] and Istio [7], both extending Kubernetes, are the
best known and most popular open source software platforms
for realizing Service Mesh. Istio uses Envoy’s proxy [8], while
Linkerd uses its own specialized micro-proxies.

Cilium [9] is also an open source software platform for
cloud native environments such as Kubernetes clusters.

While all modern Service Meshes are developed as open-
source software, the recent idea (see, e.g., Mulligan 2023 [5])
that the service mesh is now becoming a part of the networking
stack is extremely interesting. It should be emphasized that the
networking stack is primarily based on protocol specifications,
not software.

Let’s present the idea of our SSMMP. There are no sidecars,
and no proxies. Each microservice instance communicates
(according to SSMMP) directly with the agent running on the
same host.

Execution of microservices, their replications and closing
are controlled and monitored by Manager via its agents. A
similar idea is also in Durán and Salaün 2016 [10]. Commu-
nication sessions between microservices (determined by the
CNApp business logic) are controlled and monitored by the
Manager through its agents.

Each communication session is (like in TCP) connection-
oriented. A connection between client and server needs to
be established before data can be sent during the session.
The server is listening for clients. Dynamic management of
such communication sessions is the essence of the proposed
protocol.

A brief description of the protocol is provided in the next
Sections II and III. Then, the generic functionality of the
protocol is presented in Section IV. Our paper [11] arXiv:
4889471 provides the complete formal specification of proto-
col messages and the corresponding actions to be performed.
The final Section V provides a short summary.

II. MICROSERVICES

CNApp is a network application where microservices com-
municate with each other by exchanging messages (following
CNApp’s business logic) using dedicated, specific protocols
implemented on top of the network protocol stack. This is
usually TCP/UDP/IP. Due to its ubiquity, HTTP, implemented
on top of TCP/IP, can also be used as a transport protocol
for these messages. Each of these protocols is based on the
client-server model of communication. This means that the
server (as part of a running microservice on a host with
a network address) is listening on a fixed port for a client
that is a part of another microservice, usually running on a
different host. Since a client initiates a communication session
with the server, this client must know the address and port
number of the server. A single microservice can implement and

participate in many different protocols, acting as a client and/or
as a server. Thus, a microservice can be roughly defined as a
collection of servers and clients of the protocols it participates
in, and its own internal functionality (business logic). Usually,
communication protocols (at the application layer) are defined
as more or less formal specifications, independent of their
implementations. API (in the context of Cloud computing) is a
modern reincarnation of this very communication protocol in
distributed systems; see, e.g., https://aws.amazon.com/what-is/
api/ and https://thenewstack.io/what-is-api-management/.

Let the protocol be denoted as two closely related parties
to the conversation: the server S and the client P, which
are to be implemented in two microservices. Formally, let
protocol be denoted as (P, S) with appropriate superscripts
and/or subscripts if needed. After implementation, they are
integral parts of microservices that communicate using this
protocol.

Abstract inputs of a microservice can be defined as a
collection of the servers (of the protocols) it implements:

N := (S1, S2, . . . Sk)

Abstract outputs of a microservice are defined as a collection
of the clients (of the protocols) it implements:

OUT := (P′
1
, P′

2
, . . . P′

n
)

To avoid confusion, the server and client parts of a protocol
will be renamed. Components of abstract input will be called
abstract sockets, whereas components of abstract output will
be called abstract plugs.

Let us formalize the concept described above. A microser-
vice is defined as follows:

A := (N,F , OUT)

where N is the abstract inputs of the microservice, OUT is
the abstract outputs, and F denotes the business logic of the
microservice. Incoming messages, via abstract sockets of N
or/and via abstract plugs of OUT, invoke (as events) functions
that comprise the internal functionality F of the microservice.
This results in outgoing messages sent via N or/and OUT.

Generally, we distinguish three kinds of such microservices.

1) The first one is for API Gateways. They serve as
the entry points of CNApp for users. Usually, N of
API Gateway has only one element. Its functionality
comprises forwarding users’ requests to the appropriate
microservices. Therefore, API Gateway is supposed to
be stateless.

2) The second kind consists of regular microservices. Their
N and OUT are not empty. These microservices are
also supposed to be stateless. Persistent data (states) of
these microservices should be stored in backend storage
services (BaaS).

3) The third kind is for backend storage services (BaaS)
where all data and files of CNApp are stored. Their OUT
is empty.

68

https://aws.amazon.com/what-is/api/
https://aws.amazon.com/what-is/api/
https://thenewstack.io/what-is-api-management/


III. ABSTRACT ARCHITECTURE

An abstract plug (of one microservice) can be associated
with an abstract socket (of another microservice) if they
are two complementary parties of the same communication
protocol.

CNApp may be abstracted to a directed acyclic graph
representing a workflow composed of microservices of this
CNApp. The edges of the graph are of the form (abstract
plug → abstract socket). They are directed, which means
that a client (of a protocol) can initiate a communication
session with a server of the same protocol. These directions
do not necessarily correspond to the data flow. This means
that if a communication session is established, data (protocol
messages) can also flow in the opposite direction, i.e., from an
abstract input (abstract socket) to an abstract output (abstract
plug).

Abstract graph of CNApp is defined as the following di-
rected labeled multi-graph.

G := (V,E)

where V and E denote Vertices and Edges, respectively.
• Vertices V is a collection of names of services of CNApp.
• Edges E is a collection of labeled edges of the graph.

Each edge is of the form:

(C, (P, S), D)

where C and D belong to V, and (P, S) denotes a
protocol. That is, P belongs to OUT of C, and S belongs
to N of D. Hence, the edges correspond to abstract
connections between microservices. The direction of an
edge represents the client-server order of establishing
a concrete connection. There may be multiple edges
(abstract connections) between two vertices.

The above graph is an abstract view of a CNApp. Vertex
is a service name, whereas an edge is an abstract connection
consisting of the names of two services and the name of a
communication protocol between them.

Initial vertices of the abstract graph correspond to API Gate-
ways (entry points for users), whereas the terminal vertices
correspond to backend storage services (BaaS) where all data
and files of the CNApp are stored.

The vertices representing regular microservices are between
the API gateways and the backend storage services (BaaS).

Scaling through replication and reduction (closing replicas)
of a service forces it to be stateless. The reason is that if the
service is stateful, then closing (crashing) a replica causes it
to lose its state. We assume that API Gateways and regular
microservices are stateless and can be replicated, i.e., multiple
instances of such a service can run simultaneously.

To run CNApp, instances of its services must first be
executed, then abstract connections can be configured and
established as real connections, and finally, protocol sessions
(corresponding to these connections) can be started.

Some services and/or connections may not be used by some
executions of CNApp. Temporary protocol sessions can be
started for already established connections (and then closed

along with their connections) dynamically at runtime. Multiple
service instances may be running, and some are shutting down.
This requires dynamic configurations of network addresses and
port numbers for plugs and sockets of the instances. The nov-
elty of SSMMP lies in the smart use of these configurations.
A similar idea has been used by Netflix [1] at the software
level.

IV. SIMPLE SERVICE MESH MANAGEMENT PROTOCOL -
SSMMP

The complete formal specification of SSMMP and its proto-
type implementation are on GitHub [2]. Here we will present
the protocol in an intuitive, somewhat informal way. The
main actors of the protocol are: the Manager, the agents,
and the running instances of services (API Gateways, regular
microservices, and BaaS services), see Fig. 1.

There may be two (or more) running instances of the same
service. Hence, the term service refers rather to its bytecode.

The Manager communicates only with the agents. An agent,
on a node, communicates with all service instances running
on that node. Within the framework of SSMMP, any service
instance (running on a node) can only communicate with its
agent on that node.

An agent has a service repository at its disposal. It consists
of bytecodes of services that can be executed (as service
instances) on this node by the agent. The agent (as an
application) should have operating system privileges to execute
applications and to kill application processes. An agent acts as
an intermediary in performing the tasks assigned by the Man-
ager. All service instance executions, as well as shutting down
running instances, are controlled by the Manager through its
agents.

Each agent must register with the Manager so that the
network address of its node and its service repository are
known to the Manager.

At the request of the Manager, the agent can execute
instances of services whose bytecodes are available in its
repository or shut down these instances.

Once a service instance is executed, it initiates the SSMMP
communication session with its agent.

The agent can monitor the functioning of service instances
running on its node (in particular, their communication ses-
sions) and report their status to the Manager.

The Manager can also shut down (via its agent) a running
instance that is not being used, is malfunctioning, or is being
moved to another node.

Usually, in the existing service meshes, the Manager con-
trols the execution of CNApps in accordance with a policy
defined by the Cloud provider.

In SSMMP, the design and implementation of an instance
of Manager is delegated to the developer of CNApp, who can
take into account the cloud provider’s policies. This makes
this instance (dedicated to this CNApp) an integral part of
the CNApp. The current state of the Manager, as well as its
history, is stored in a dedicated database DB. The Manager
knows the service repositories of all its agents.

69



Fig. 1. Simple protocol to automate the executing, scaling, and reconfiguration of Cloud-Native Apps

The Knowledge base of the Manager consists of abstract
graphs of CNApps, i.e., the CNApps that can be deployed on
the cluster comprising all the nodes.

The current state of any running instance of the service
is stored in the Manager’s database, and consists of: open
communication sessions and their load metrics; and observable
(health, performance, and security) metrics, logs, and traces.

The key element of SSMMP is the concept of a communi-
cation session, understood jointly as establishing a connection
and then starting a protocol session on this connection.The
process of establishing and closing such sessions is controlled
by the Manager through its agents.

V. SUMMARY

SSMMP is simple if we consider its description presented
above, and especially the complete formal specification at
GitHub [2] with the complete Java API.

The concept of an abstract connection between services
(in the abstract graph of CNApp) and its implementation as
communication sessions is crucial. The abstract definition of
the service of CNApp is also important here. Separation of
these abstract notions from deployment is important.

The novelty of SSMMP consists in the dynamic establish-
ment and the closing of communication sessions at runtime
based on the configurations assigned to sockets and plugs by
the Manager.

Although a similar approach has already been used in
Netflix [1] (as a dedicated software), it can be fully exploited in
Netflix by extending the network protocol stack with SSMMP.

Since executing, scaling, and reconfiguration of CNApp can
be done by SSMMP, it seems reasonable to include SSMMP
as an integral part of CNApp. Crash recovery for CNApp can
also be performed using SSMMP.

REFERENCES

[1] D. Vroom, J. Mulcahy, L. Yuan, and R. Gulewich, “Zero
Configuration Service Mesh with On-Demand Cluster Discovery,
https://netflixtechblog.com/zero-configuration-service-mesh-with-on-
demand-cluster-discovery-ac6483b52a51,” Aug 30, 2023.

[2] S. Ambroszkiewicz, “GitHub: SMMP,” May 8,
2024. [Online]. Available: https://github.com/sambrosz/
SSMMP-a-simple-protocol-for-Service-Mesh-management

[3] M. Schwarz and A. Neverov, “Up: Portable Microservices Ready for
the Cloud,” Sep 7, 2023. [Online]. Available: https://www.uber.com/
en-PL/blog/up-portable-microservices-ready-for-the-cloud/

[4] B. Ibryam and R. Losio, “Cloud-Computing in the Post-Serverless
Era: Current Trends and beyond,” Jan 22, 2024. [Online]. Available:
https://www.infoq.com/articles/cloud-computing-post-serverless-trends/

[5] B. Mulligan, “The Future of Service Mesh is Networking,”
February 24, 2023. [Online]. Available: https://www.infoq.com/articles/
service-mesh-networking/?utm source=email&utm medium=cloud&
utm campaign=newsletter&utm content=02282023

[6] Linkerd, “A different kind of service mesh,” 2023. [Online]. Available:
https://linkerd.io/

[7] “The Istio service mesh,” 2023. [Online]. Available: https://istio.io/
[8] “Envoy,” 2023. [Online]. Available: https://www.envoyproxy.io/
[9] “Cilium – eBPF-based Networking, Observability, Security,” 2022.

[Online]. Available: https://cilium.io/
[10] F. Durán and G. Salaün, “Robust and reliable reconfiguration of cloud

applications,” Journal of Systems and Software, vol. 122, pp. 524–537,
2016.

[11] S. Ambroszkiewicz and W. Bartyna, “A simple protocol to automate
the executing, scaling, and reconfiguration of cloud-native apps,” 11
May 2023. [Online]. Available: https://arxiv.org/abs/2305.16329

70

https://github.com/sambrosz/SSMMP-a-simple-protocol-for-Service-Mesh-management
https://github.com/sambrosz/SSMMP-a-simple-protocol-for-Service-Mesh-management
https://www.uber.com/en-PL/blog/up-portable-microservices-ready-for-the-cloud/
https://www.uber.com/en-PL/blog/up-portable-microservices-ready-for-the-cloud/
https://www.infoq.com/articles/cloud-computing-post-serverless-trends/
https://www.infoq.com/articles/service-mesh-networking/?utm_source=email&utm_medium=cloud&utm_campaign=newsletter&utm_content=02282023
https://www.infoq.com/articles/service-mesh-networking/?utm_source=email&utm_medium=cloud&utm_campaign=newsletter&utm_content=02282023
https://www.infoq.com/articles/service-mesh-networking/?utm_source=email&utm_medium=cloud&utm_campaign=newsletter&utm_content=02282023
https://linkerd.io/
https://istio.io/
https://www.envoyproxy.io/
https://cilium.io/
https://arxiv.org/abs/2305.16329

	Introduction 
	The problem and related work

	Microservices
	Abstract Architecture 
	Simple Service Mesh Management Protocol - SSMMP
	Summary
	References

