
Checkpointing and Adaptive Scheduling in HPC: A 
Case Study on the Aznavour Cluster 

 
 Mikayel Gyurjyan 

IIAP NAS RA 
Yerevan, Armenia 

e-mail: mikayelg@gmail.com 
 

  

Abstract— This paper presents a practical and extensible 
approach to implementing checkpointing on the Aznavour HPC 
cluster in Armenia using the DMTCP (Distributed 
MultiThreaded Checkpointing) system, integrated seamlessly 
with the SLURM workload manager. We describe the benefits 
and methodology of transparent checkpointing and propose a 
design for future extensions, based on models for adaptive job 
scheduling that respect task priorities, resource demands, and 
waiting time constraints.  

 
Keywords—High-performance computing, checkpointing, 

adaptive scheduling, SLURM, DMTCP, Aznavour cluster, 
queueing models. 

 

I. INTRODUCTION  
High-performance computing (HPC) clusters face 

increasing demands for fault tolerance and efficient resource 
utilization. Checkpointing — the ability to save and restore 
program states — is critical for long-running computational 
jobs, especially in systems like the Aznavour cluster, 
Armenia's national supercomputing infrastructure [10]. 

We focus on integrating checkpointing mechanisms into 
the Aznavour cluster using DMTCP and SLURM and provide 
a future roadmap for incorporating advanced queue 
scheduling strategies based on recent theoretical models. 

 
 

II. OVERVIEW OF CHECKPOINTING SYSTEMS 
Checkpointing systems are essential components of 

resilient HPC infrastructures, enabling jobs to resume 
execution from their last saved state in the event of a failure. 
These tools vary in terms of their integration level, support for 
parallelism, and ease of deployment. A good checkpointing 
mechanism must balance transparency, performance 
overhead, and support for complex workloads such as MPI-
based applications. 

Several prominent checkpointing systems exist: 
 BLCR (Berkeley Lab Checkpoint/Restart) [4]: A 

kernel-level tool that supports MPI, now considered 
legacy. 

 DMTCP (Distributed MultiThreaded 
Checkpointing) [3]: A user-space library with 

strong support for MPI and SLURM, without kernel 
dependencies. 

 CRIU (Checkpoint/Restore In Userspace) [5]: 
Widely used for containerized applications in 
environments like Docker or LXC. 

 OpenMPI-integrated checkpointing [6]: 
Previously supported via BLCR but deprecated in 
newer MPI versions. 

Among these, DMTCP emerges as the most practical 
choice for Aznavour, given its: 

 Compatibility with OpenMPI/MPICH 
 Non-invasive integration via job scripts 
 Periodic and manual checkpoint support 
 Suitability for batch-scheduled environments like 

SLURM 
In subsequent sections, we describe how DMTCP can be 

integrated into Aznavour's SLURM-based pipeline to deliver 
robust fault-tolerance capabilities. 

 

III. IMPLEMENTATION ON AZNAVOUR CLUSTER 
The Aznavour cluster, Armenia's national HPC platform, 

supports scientific research in physics, biology, climate 
modeling, and AI. The cluster comprises dozens of compute 
nodes connected via high-speed interconnects and managed 
by the SLURM workload manager. 

In 2025, DMTCP-based checkpointing was deployed 
across all SLURM queues, offering fault-tolerance and 
flexibility to long-running jobs. The cluster’s architecture is 
now equipped to support: 

 Transparent state saving and job recovery 
 Periodic and on-demand checkpointing 
 SLURM-native job requeuing and resume 

functionality 
Benefits Observed Post-Deployment 

 Job resilience: Long simulations (>24h) are now 
protected from hardware failure 

 Minimal overhead: Checkpointing introduces 
minimal overhead, with performance primarily 
influenced by the checkpoint interval  

 Zero-code integration: Most MPI applications 
required no modifications 

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_15 71



 Simplified job recovery: SLURM scripts automate 
restart from last checkpoint 

 Future extensibility: Hooks available to integrate 
adaptive scheduling policies 

 

IV. SLURM AND CHECKPOINTING INTEGRATION 
SLURM offers native support for job requeuing (`--

requeue`). Integration with DMTCP is achieved by wrapping 
MPI jobs with `dmtcp_launch`, using `dmtcp_command` for 
checkpointing, and `dmtcp_restart` to resume jobs. Below is 
an example script: 

 
#!/bin/bash 
#SBATCH --job-name=myjob 
#SBATCH --output=res.out 
#SBATCH --time=01:00:00 
#SBATCH --requeue 
module load dmtcp 
srun dmtcp_launch ./my_mpi_app 

 

V. ENHANCED QUEUEING EXTENSIONS 
We explore advanced queue models, including MFIFO, 

WTR, and virtual waiting time analytics. They allow SLURM 
to prioritize tasks based on patience, resource intensity, and 
fair share, potentially using SLURM plugin extensions or 
job_submit.lua hooks. 

As an example, consider a queueing model with a waiting 
time restriction (WTR), where jobs are allowed to wait in the 
queue only for a limited time before being dropped or 
rescheduled. In SLURM, this can be represented by 
associating a maximum virtual waiting time with each job and 
prioritizing resubmissions or reservations accordingly. 
Mathematically, such systems have been modeled using 
Markov chains and steady-state probabilities, as shown in 
[2,7,8]. These models provide a foundation for designing 
SLURM plugins that dynamically adapt scheduling based on 
system load and job patience profiles. 

 
 

VI.  PERFORMANCE EVALUATION 
Preliminary tests on the Aznavour cluster indicate that 

checkpointing introduces minimal overhead, with 
performance primarily influenced by the checkpoint interval, 
number of processors, memory usage, and task size. These 
parameters will be explored further to derive scalable 
performance models and visualizations. No application code 
changes were needed, and DMTCP handled multi-process 
MPI jobs gracefully. Reliability of jobs improved 
significantly, especially for long-running simulations. 

 

VII. FUTURE WORK 
Next steps include cluster-wide integration with SLURM 

plugins, GPU job support, predictive scheduling based on 
waiting time thresholds, and adaptive scheduling via 
reinforcement learning. 

VIII.  CONCLUSION 
DMTCP checkpointing on the Aznavour cluster 

demonstrates the potential of lightweight, transparent 
recovery tools. Integration with SLURM was straightforward, 
and future improvements may include queue-aware 
scheduling using theoretical models from Armenian HPC 
research. 

REFERENCES 
[1] V. Sahakyan, Y. Shoukourian, H. Astsatryan, “About Some Queueing 

Models for Computational Grid Systems,” Math. Problems of 
Computer Science, vol. 46, pp. 55–58, 2016. 

[2] V. Sahakyan, A. Vardanyan, “About Virtual Waiting Time in a 
Multiprocessor System,” CSIT Conference, pp. 111-113, 2023. 
https://doi.org/10.51408/csit2023_23 

[3] DMTCP GitHub repository. [Online]. Available:  
https://github.com/dmtcp/dmtcp 

[4] P. Hargrove, J. Duell, “BLCR for Linux Clusters,” LBNL. [Online]. 
Available:  https://crd.lbl.gov/ 

[5] CRIU Project Documentation. [Online]. Available:  https://criu.org/ 
[6] “OpenMPI FAQ - Fault Tolerance”. [Online]. Available:   

https://www.open-mpi.org/faq/?category=ft 
[7] V. Sahakyan, A. Vardanyan, “The Steady State Distribution for 

M|M|m|n Model with the Waiting Time Restriction,” Math. Problems 
of Computer Science, vol. 54, pp. 34–40, 2020. 

[8] M.Gyurjyan, V. Sahakyan, “Queues modelling of the multimachine 
computing system”. Mathematical Problems of Computer Science, 
Transactions of IIAP NAS RA, vol. 23, pp. 166-174, 2004. 

[9] H. Astsatryan, T. Grigoryan, M. Gyurjyan, V. Sahakyan, Yu. 
Shoukourian, “Development of Web Environment for Efficient 
Exploitation of Linux Cluster” Computing Resources. Proceedings of 
the Seventh International meeting on VECPAR’06, July 10-13, 2006, 
Rio de Janeiro, Brazil. 

[10] Armenian National Supercomputing Center. [Online]. Available:  
https://anscc.sci.am 
 
 
 

72

https://doi.org/10.51408/csit2023_23
https://github.com/dmtcp/dmtcp
https://crd.lbl.gov/
https://criu.org/
https://anscc.sci.am/

	I. Introduction
	II. Overview of Checkpointing Systems
	III. Implementation on Aznavour Cluster
	Benefits Observed Post-Deployment

	IV. SLURM and Checkpointing Integration
	V. Enhanced Queueing Extensions
	VI.  Performance Evaluation
	VII. Future Work
	VIII.  Conclusion
	References


