
Computing in Hierarchical Virtual Environments
Evgeniy Ibatullin

St. Petersburg University
St. Petersburg, Russia

e-mail: officevg3n@gmail.com

Alexander Bogdanov
St. Petersburg University

St. Petersburg, Russia
e-mail: a.v.bogdanov@spbu.ru

Abstract—Distributed and high-performance computing
(HPC) continue to evolve in response to escalating computational
demands, yet existing architectures face significant limitations
in scalability, latency, and data availability. To overcome these
constraints, we propose integrating advanced computational
paradigms—such as cloud computing, virtualization, and
hierarchical storage architectures—into a unified framework.
This paper presents an approach to organizing computing and
storage resources for efficient large-scale big data processing.
We first identify the foundational technologies required to build
such a system, then detail their necessary adaptations to meet
the unique demands of modern big data workloads.

Keywords—Hierarchy, distributed systems, virtualization,
cloud computing.

I. STATEMENT OF PROBLEM

Distributed systems have long been a major focus of re-
search and discussion. Recent studies, however, increasingly
conclude that fully integrated systems—built across multiple
layers (e.g., computation nodes, storage, and networking)—are
essential. For instance, the research in [1] describes a comput-
ing continuum system that concurrently executes tasks across
multiple tiers: Cloud, Fog, Edge, and IoT. This highlights
the need for modern systems to adopt hierarchical archi-
tectures with precise resource management to achieve high
performance. Similarly, [2] addresses the challenge of diverse
computational paradigms, proposing heterogeneous integration
of modular approaches for scientific computing. Furthermore,
the emerging field of federated learning introduces the task of
coordinating edge resources. As [3] demonstrates, recent AI
advancements rely on federated computing across heteroge-
neous cloud and high-performance computing (HPC) infras-
tructures, underscoring that effective resource collaboration is
critical for building robust systems.

In summary, the core challenge we address is the demand
for seamless resource integration:

1) Data integration requires unifying disparate data sources;
2) Computational integration demands efficient orchestra-

tion of heterogeneous paradigms;
3) Infrastructure integration necessitates optimal exploita-

tion of physical devices.

II. TECHNOLOGIES

There are several technologies that should be described to
achieve integrated system: Virtualization, Hierarchical archi-
tecture and Data management.

A. Virtualization

Virtualization demonstrates the ability of modern systems
to abstract physical resources, thereby simplifying compu-
tational modeling. This capability enables the construction
of high-performance computing (HPC) networks grounded in
mathematical or physical models with well-defined scalability,
latency, and connectivity properties.

Numerous virtualization approaches exist for diverse re-
sources, including networks, CPU cores, NPUs, GPUs, and file
systems. In distributed systems, the representation of nodes is
critical. Two primary approaches address this:

• Containers: Lightweight, self-contained units sharing the
host OS kernel.

• Virtual Machines (VMs): Provide strong isolation
through full hardware emulation but incur higher resource
overhead.

Containerization, an increasingly prevalent paradigm, offers
significant advantages for dynamic systems. Studies [4]–[6]
demonstrate its benefits for high availability [4], operational
efficiency [5], and heterogeneous edge computing [6]. How-
ever, VMs remain preferable for scenarios demanding strict
security and stability.

Additionally, logical abstraction decoupling architecture
from underlying heterogeneity. Thatprovides a unified view
of distributed resources.

To address our requirements, the solution has to integrate
diverse computing paradigms. This necessitates a system ca-
pable of adapting to heterogeneous environments, data, and
resources. Consequently, we focus on containerized clusters
to achieve the required agility.

B. Hierarchical Architecture

Hierarchical architectures organize systems into layered
structures where each stratum exhibits heterogeneous charac-
teristics. This approach enhances scalability and enables adap-
tation of domain-specific computational methods at individual
layers, provided each layer operates as an independent module.
Since the architecture defines inter-layer communication proto-
cols, new protocols can be implemented through encapsulation
of existing ones. However, hierarchical systems demand pre-
cise control: failures in layer synchronization, communication
bottlenecks, or mapping/extraction delays propagate system-
wide performance degradation.

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_16 73



Hierarchical design is particularly essential in highly het-
erogeneous environments. The following example illustrates
this necessity:

1) Grid Computing: Grid computing emerged as a global
infrastructure for federated resource sharing across administra-
tive domains, addressing the demand for worldwide distributed
computing [7]. These architectures typically implement multi-
layer computational frameworks for large-scale scientific ex-
periments. Key characteristics include [7]:

• Integration of resources and users spanning disparate
administrative domains;

• Standardized multi-purpose protocols for authentication,
authorization, resource discovery, and access;

• Coordinated resource utilization to deliver configurable
quality-of-service (QoS) levels.

Despite its utility, Grid computing remains largely task-
specific. As demonstrated in [8], broader adoption requires
not only architectural deployment but also adaptive module
specialization—tailoring individual components to heteroge-
neous workloads. Future developments must focus on dynamic
resource orchestration to enhance efficacy beyond niche sci-
entific applications.

2) Edge Computing: Edge computing introduces extreme
heterogeneity through resource-constrained mobile and IoT
devices, leveraging their growing computational capabilities.
This paradigm adopts a hierarchical structure—extending from
cloud to fog (intermediate edge layer) and endpoint de-
vices—to decentralize computation from centralized cloud in-
frastructures. While this offloads processing from core systems
[9], it introduces additional round-trip latency due to multi-hop
communication.

Despite latency trade-offs, hierarchical edge architectures
can outperform flat (non-hierarchical) designs in resource
efficiency and communication overhead when properly man-
aged [10]. However, realizing these gains requires solving the
dynamic resource orchestration problem: optimally distribut-
ing workloads across heterogeneous layers while balancing
latency, energy consumption, and computational constraints.
This remains an active research challenge, with emerging
solutions focusing on adaptive scheduling and context-aware
resource allocation.

3) Other paradigms: Several computing paradigms ex-
emplify the power of layered architectures through strate-
gic decomposition. Beyond grid computing, three prominent
approaches demonstrate how hierarchical structuring enables
complexity management:

• Microservices Architecture.
• Blockchain Architecture.
• High-Performance Computing.

In these approaches, layering provides critical abstraction
(hiding implementation details), modularity (enabling inde-
pendent component evolution), and specialization (optimizing
each tier for specific functions)—collectively allowing com-
plex systems to be managed, scaled, and maintained with
precision. The consistent recurrence of this pattern across

domains underscores hierarchy as a fundamental principle for
engineering distributed systems.

C. Data Management in Distributed Systems

Data is fundamental to computational systems. While prior
sections addressed computational paradigms, this part focuses
on adapting data technologies for highly distributed environ-
ments. Evidence shows that increasing distribution and hetero-
geneity directly correlate with data management complexity
[11].

To address these challenges, modern systems employ dis-
tributed file systems that abstract underlying computational
nodes. Two dominant architectures exist:

1) Data Warehouses: Optimized for structured data stored
on physical disks, accessed via SQL queries. Effective
for transactional operations but ill-suited for Big Data
scenarios characterized by high volume, velocity, and
variety.

2) Data Lakes: Designed for unstructured/semi-structured
data, enabling low-cost storage of diverse datasets. Their
key advantage is storage that supports on-demand ana-
lytics.

Fig. 1. Data-lake and Data-warehouse processes

Despite rapid adoption, data lakes face critical challenges:
• Integration of heterogeneous data lake implementations

across administrative domains
• Scalability beyond petabyte-scale workloads
• Unified access interfaces spanning geographically dis-

tributed sites
• Ensuring data freshness and version consistency in dy-

namic environments
These limitations have driven data lake integration with cloud
ecosystems. While cloud platforms offer partial solutions
for resource heterogeneity, significant gaps remain in hy-
brid architectures. We argue that hierarchical data manage-
ment—extending the architectural principles established in
previous sections.

Two hierarchical approaches show promise:
1) Multi-tiered physical storage: Combining storage me-

dia (e.g., SSDs, HDDs, tape) with orchestration balanc-
ing access latency and cost. This approach is validated

74



in high-energy physics workflows at CERN, where the
EOS storage system manages exabyte-scale data across
hierarchical tiers [12].

2) Compute-aware data placement: Integrating data lakes
with cloud/fog/edge hierarchies. By caching frequently
accessed data at edge/fog layers (analogous to CPU
cache hierarchies), latency-sensitive requests are served
locally. However, this demands sophisticated metadata
management to maintain consistency across layers—a
challenge requiring adaptive orchestration mechanisms.

III. MESH ARCHITECTURE

In this section, we present the overall design of the unite
system. As noted previously, modern computing demands
accommodate multiple paradigms—each of which imposes its
own requirements on data access and control. To reconcile
these heterogeneous demands, we propose a multilayered,
hierarchical architecture supporting virtualized computing re-
sources.

Our architecture can be viewed as a high-throughput com-
puting (HTC) “network of networks,” where each managed
cluster is optimized for high-performance computing (HPC)
workloads. Beginning at the bottom, we organize the system
into (A) a computation layer comprising worker nodes; (B)
one or more virtualization and local management layers that
abstract and coordinate resources; and (C) a unified access
layer at the top, which provides a single entry point for users
and applications.

A. Computational Layer

The computational layer consists of a set of heterogeneous
physical devices (CPUs, GPUs, FPGAs, etc.) organized into
worker-node clusters. These nodes execute computational jobs
under a multi-paradigm framework; the selection of an appro-
priate paradigm for each task is delegated to the global and
local managers. We assume that this selection—whether opti-
mal or suboptimal—is provided by a higher-level scheduling
policy.

To accommodate diverse hardware, we employ container-
based virtualization as described in Section II-A. Containers
enable isolation, portability, and rapid deployment, thereby
mitigating the complexities of heterogeneous environments.
For large-scale deployment, the system leverages cloud-native
methodologies [13]: on-demand provisioning, namespace iso-
lation, and policy-driven automation. Without extensive au-
tomation, achieving true elasticity and fault tolerance at scale
is infeasible. Accordingly, our approach integrates container-
orchestration tools to automate cluster deployment, scaling,
and health-monitoring.

Data management in the computational layer is designed
for stateless execution: individual worker nodes cache only
the data needed for their current tasks. Persistent storage of
shared datasets is delegated to the local manager tier, which
maintains high-throughput caches and coordinates prefetching
and replication. This division of responsibility minimizes I/O

bottlenecks and ensures that data-intensive jobs can proceed
with low latency.

B. Local Management Layer

The local management layer provides a unified, virtualized
view of the underlying computational layer. Because worker
nodes may differ in hardware, software stack, and supported
programming models, this layer performs abstraction to sim-
plify higher-level control and enable uniform resource man-
agement. To support this function, we maintain a metadata
repository that records the capabilities, configuration, and cur-
rent state of each node, thereby enabling protocol virtualization
and dynamic adaptation.

Other responsibility of the local manager is to select the
appropriate execution environment for tasks dispatched by
the global scheduler. This requires implementation of cus-
tomizable scheduling and autoscaling policies. Task descrip-
tions—supplied by end users and annotated by the global man-
ager—must include resource requirements (e.g., CPU cores,
GPU types) and performance objectives (e.g., latency targets,
throughput goals) to inform effective placement decisions.

Resource governance and automation are also critical at this
layer. By interfacing with container-orchestration platforms
and building bespoke automation workflows, the local manager
can provision, update, and heal worker-node pools without
manual intervention. This level of automation is essential for
maintaining performance and reliability as the system scales.

Finally, the local management layer optimizes data locality
through a hierarchical storage architecture. A data-placement
engine continuously monitors access patterns and migrates
or replicates data blocks to node-local caches as needed.
While designing such a system is challenging, recent work
has demonstrated the efficacy of reinforcement-learning–based
policies for automated data-placement decisions [14], [15].

C. Global Management Layer

The global management layer serves as the single entry
point for end users, abstracting all resource details and ex-
posing a unified API for job submission and result retrieval.
To enable opaque access, the layer maintains a comprehen-
sive global metadata catalog that tracks resource availability,
topology, and performance metrics across all local managers.
This metadata must be highly available and partition-tolerant
to support continuous operation under peak loads.

Given the volume of incoming job requests and result
queries, the global layer must itself be a massively paral-
lel, distributed service. We adopt a hybrid architecture that
integrates proven supercomputing middleware with cloud-
native scalability patterns [16]. Incoming requests are load-
balanced across stateless front-end clusters, which orchestrate
task dispatch to local managers and aggregate results upon
completion.

Data orchestration at this level addresses both metadata traf-
fic and bulk data movement. While metadata operations (e.g.,
scheduling decisions, status updates) benefit from low-latency
key–value stores, application working data typically originates

75



from large-scale, Big Data repositories. A hierarchical storage
strategy—similar to that described in [14], [15]—coordinates
prefetching, caching, and replication to minimize end-to-end
latency.

For resilience and maintainability, each component of the
global management layer is designed as an independent, self-
managing microservice. This decoupled approach avoids the
pitfalls of monolithic designs, allowing modules to evolve,
scale, and recover autonomously. Comprehensive automa-
tion—spanning deployment, scaling, health monitoring, and
failover—is indispensable to prevent administrative bottle-
necks and ensure continuous service availability.

From the user’s standpoint, the entire stack appears as a
logically virtualized compute fabric. Users submit job descrip-
tions via a RESTful or gRPC-based API, specifying resource
requirements and performance objectives. The global manage-
ment layer then transparently selects the optimal execution
environment—be it high-performance clusters, GPU pools, or
on-demand cloud instances—and returns results through the
same API interface.

IV. CONCLUSION

In this paper, we have presented the design of a hierar-
chical, virtualized computational system that unifies diverse
computing paradigms under a single access point. Starting
from low-level worker nodes, we introduced container-based
virtualization and metadata-driven management to address
hardware and software heterogeneity. We then detailed a two-
tier control hierarchy—local managers for node-level schedul-
ing, autoscaling, data placement, and a global manager for
unified job submission, resource discovery, and result aggrega-
tion. Throughout, we emphasized automation, modularity, and
a hierarchical storage architecture to optimize performance,
reliability, and scalability.

Our proposed model reconciles the strengths of HTC, HPC,
and cloud/fog/edge environments, enabling organizations to
integrate disparate resources into a coherent, high-throughput
platform. By decoupling components into independently de-
ployable, self-managing services, the system avoids monolithic
bottlenecks and supports continuous evolution and mainte-
nance. Reinforcement-learning–based data-placement strate-
gies further enhance data locality and reduce I/O latency.

REFERENCES

[1] S. Dustdar, V. C. Pujol, P. K. Donta, ”On Distributed Computing
Continuum Systems”, IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 4, pp. 4092–4105, 2023.

[2] F. J. Seinstra, B. Bal, D. H. J. Epema, ”Jungle Computing: Distributed
Supercomputing Beyond Clusters, Grids, and Clouds”, Grids, Clouds
and Virtualization, M. Cafaro and G. Aloisio (Eds.), Springer, London,
UK, 2011.

[3] Z. Li et al., ”Secure Federated Learning Across Heterogeneous Cloud
and High-Performance Computing Resources: A Case Study on Feder-
ated Fine-Tuning of LLaMA 2”, Computing in Science & Engineering,
vol. 26, no. 03, pp. 52–58, 2024.

[4] S. Deochake, S. Maheshwari, R. De, A. Grover, ”Comparative Study
of Virtual Machines and Containers for DevOps Developers”, [Online].
Available: https://arxiv.org/abs/1808.08192, 2018.

[5] W. Li, A. Kanso, ”Comparing Containers versus Virtual Machines for
Achieving High Availability”, 2015 IEEE International Conference on
Cloud Engineering, Tempe, AZ, USA, pp. 353–358, 2015.

[6] H. Sturley, A. Fournier, A. Salcedo-Navarro, M. Garcia-Pineda, J.
Segura-Garcia, ”Virtualization vs. Containerization, a Comparative
Approach for Application Deployment in the Computing Continuum
Focused on the Edge”, Future Internet, vol. 16, no. 11, 427, 2024.

[7] I. Foster, C. Kesselman, ”The History of the Grid”, [Online]. Available:
https://arxiv.org/abs/2204.04312, 2022.

[8] I. Foster, C. Kesselman, ”Computational Grids”, [Online]. Available:
https://arxiv.org/abs/2501.01316, 2025.

[9] M. Satyanarayanan, ”The Emergence of Edge Computing”, Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[10] L. Tong, Y. Li, W. Gao, ”A hierarchical edge cloud architecture
for mobile computing”, IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications, San
Francisco, CA, USA, pp. 1–9, 2016.

[11] S. Azzabi, Z. Alfughi, A. Ouda, ”Data Lakes: A Survey of Concepts
and Architectures”, Computers, vol. 13, 183, 2024.

[12] M. Afonso et al., ”The CERN Tape Archive Beyond CERN An Open
Source Data Archival System for HEP”, EPJ Web of Conferences, vol.
295, 2024.

[13] A. Al-Said Ahmad, P. Andras, ”Scalability Analysis Comparisons of
Cloud-based Software Services”, Journal of Cloud Computing, vol. 8,
2019.

[14] D. Vengerov, ”A reinforcement learning framework for online data
migration in hierarchical storage systems”, The Journal of Supercom-
puting, vol. 43, pp. 1–19, 2008.

[15] T. Zhang, A. Hellander, S. Toor, ”Efficient Hierarchical Storage Man-
agement Empowered by Reinforcement Learning”, IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 6, pp. 5780–5793,
2023.

[16] I. Gankevich et al., ”Constructing Virtual Private Supercomputer Using
Virtualization and Cloud Technologies”, Computational Science and Its
Applications – ICCSA 2014, vol. 8584, pp. 341–354, 2014.

76


