
High-Performance Cloud-Based Architecture for
Real-Time Patient Monitoring and Alerting in IoMT

Environments
Vahagn Aleksanyan

Yerevan State University
Yerevan, Armenia

e-mail: vahagn.aleksanyan@gmail.com

Narek Petrosyan
Yerevan State University

Yerevan, Armenia
e-mail: pnarek375@gmail.com

Anna Hovakimyan
Yerevan State University

Yerevan, Armenia
e-mail: ahovakimyan@ysu.am

Abstract—Growing demand for real-time patient monitoring
in modern healthcare has accelerated the adoption of Internet
of Medical Things (IoMT) technologies. This paper presents a
high-performance, cloud-based architecture that supports the
continuous collection of biometric data, intelligent processing,
and real-time alerting during critical events. The proposed
system utilizes lightweight communication protocols, such as
MQTT and WebSocket, for low latency and effective data
transfer between wearable medical devices and a cloud server.
The backend is optimized using modular C++ components,
containerized services, and TimescaleDB for scalable storage
of time-series data. Dynamic integration of real-time risk
assessment plugins enables the analysis of patient data streams
and the issuance of emergency alerts. Mobile applications for
patients and doctors offer responsive interfaces for visualizing
historical data, sending real-time notifications, and enabling
secure doctor-patient messaging. Altogether, this system
provides a practical and scalable solution to the performance
and reliability challenges of remote health monitoring in IoMT
environments.

Keywords—Internet of Medical Things, IoMT, real-time mon-
itoring, cloud computing, MQTT, TimescaleDB, patient alerting,
high-performance architecture.

I. INTRODUCTION

Real-time monitoring of patient health is a key aim of
modern healthcare, and is increasingly enabled by the Internet
of Medical Things (IoMT)—interconnected medical devices
and systems that continuously collect and transmit biometric
data [1]. IoMT-based remote patient monitoring (RPM) lets
clinicians track vitals in real time, improving convenience for
patients with chronic conditions and enabling earlier inter-
vention; studies report benefits for clinical decision-making,
timely responses, and long-term cost reduction [2]–[4].

To process continuous data streams at scale, IoMT architec-
tures commonly rely on cloud computing for elastic storage
and compute [5]. Cloud-connected sensor networks improve
quality of service and reliability, while aggregated vital signs
can be analyzed to detect risks and trigger alerts; recent
platforms increasingly apply machine learning for anomaly
detection and prediction [2], [6].

Low-latency communication is critical. MQTT provides
lightweight, publish/subscribe messaging with configurable

QoS, suiting resource-constrained devices and real-time vital
streaming [7]. For clinician- and patient-facing apps, Web-
Sockets maintain bidirectional connections, so alerts and live
data can be pushed without polling, achieving sub-second
updates in practice [8]. Together, MQTT for device-to-cloud
ingestion and WebSockets for cloud-to-user delivery enable
end-to-end responsiveness.

Finally, modularity and scalability are addressed via a
microservice design deployed in containers (e.g., Docker),
allowing independent development, scaling, and updates of
services for ingestion, analytics, storage, and notification [5].
This cloud-backed, containerized approach underpins the real-
time performance and extensibility targeted in this work.
The following sections review related efforts and detail the
proposed architecture.

II. RELATED WORK

IoMT-based patient monitoring has been widely studied,
with surveys cataloging applications, common architectures,
and challenges such as data heterogeneity, mobility, and QoS
constraints [4]. Early efforts connected wearable sensors to
cloud services for remote review and disease-specific man-
agement, reporting benefits for clinical decisions and reduced
readmissions [2], [3], [6].

A key theme is communication efficiency. MQTT is fre-
quently adopted for device-to-cloud streaming thanks to its
lightweight pub/sub model and QoS options; studies recom-
mend mid-level QoS to balance latency and reliability in
healthcare traffic [7]. For cloud-to-user delivery, event-driven
push (e.g., WebSockets) replaces HTTP polling, achieving
sub-second updates in telehealth dashboards and enabling
instant alerting [8], [9]. The literature increasingly converges
on MQTT plus real-time push as a pragmatic foundation for
time-critical IoMT [7], [8].

Architecturally, multi-tier designs (device, edge/fog, cloud)
are used to trade latency vs. capacity [4], while cloud-centric
systems expose standardized APIs and leverage NoSQL or
time-series stores for high-volume streams [5]. Microservices
and containerization (e.g., Docker) improve scalability and

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_19 85



evolvability across ingestion, analytics, storage, and notifica-
tion services [5]. Interoperability through gateways or stan-
dards (e.g., HL7 FHIR) supports integration with hospital
systems. Beyond thresholds, recent work applies ML to detect
anomalies and predict adverse events from IoMT data; other
efforts combine IoMT with blockchain for trustworthy event
logging and alerts [2], [6], [10].

Despite this progress, gaps remain: many solutions empha-
size connectivity or analytics in isolation, struggle to scale un-
der high-frequency, multi-sensor workloads, or hard-wire alert
logic into monoliths [5]. To address these limitations, we adopt
a plugin-based architecture that lets new analysis modules
be integrated dynamically—unlike fixed-function designs [1],
[4]—and we employ event-driven, real-time alerting that uses
MQTT for ingestion and WebSocket push instead of periodic
polling [3], [7], [8]. At the core is a high-performance, modular
C++ backend engineered for non-blocking I/O and horizontal
scaling, sustaining low-latency processing under load. The
resulting platform is general-purpose and extensible—capable
of incorporating new devices, analytics methods, and even add-
ons such as blockchain-backed logging [2]—while preserving
end-to-end responsiveness.

III. SYSTEM ARCHITECTURE

A. Overview of the System
The system provides a high-performance, scalable platform

for real-time remote monitoring in IoMT settings. Wearable
devices, mobile apps, and cloud services work together to
capture, normalize, transmit, analyze, and store biometric data,
and to issue emergency notifications. The architecture is modu-
lar for extensibility and maintainability. At the core is a cloud

Fig. 1. The Architecture of the System

backend with a message broker, processing server, database
layer, and attachable risk-assessment plugins. The patient app
connects to wearables via BLE/GATT, normalizes readings,
and publishes them via MQTT. The physician app provides
real-time views, historical data, alerts, and secure messaging.
Services are deployed in containers/VMs for horizontal scal-
ing and fault tolerance. Time-series data use TimescaleDB;
relational data (users, roles, alerts) use PostgreSQL.

B. Cloud Infrastructure
The backend is implemented in modern C++ (C++26) with

attention to performance, memory, concurrency, and I/O. Com-
ponents run independently in containers. Key components:

Fig. 2. The Architecture of the Cloud Infrastructure

• MQTT Broker – Low-latency publish/subscribe ingress
for device telemetry.

• Main Processing Server – Subscribes to topics, val-
idates/decodes messages, manages auth/sessions, and
routes work.

• Database Plugin Layer – Decoupled writers and analysis
hooks; plugins can attach to specific streams.

• Risk Assessment Modules – Real-time rules/heuristics
over single or combined signals; emit alerts and persist
results.

All services are containerized (Docker) and deployed on
VMs with load balancing, centralized logging/monitoring,
and rolling updates. The modular design eases incremental
expansion.

C. Mobile Application

The mobile client targets Android and iOS using native
stacks (Java/Kotlin, Swift) and a shared C++ core for common
logic and performance. BLE integration uses platform APIs
with attention to power and intermittent connectivity; device-
specific adapters normalize payloads without affecting server
contracts. Main layers:

Fig. 3. The Architecture of the Mobile Application

• Device Interface – BLE discovery, pairing, and GATT
subscriptions (heart rate, glucose, etc.).

• Adapters – Per-device normalization to an internal JSON
schema.

• Communication – MQTT for uplink telemetry; Web-
Socket for real-time updates/alerts.

86



• UI – Live and historical charts, alerts, and secure chat
for patient/physician roles.

• Caching/Offline – Local buffering and later sync on poor
connectivity.

• Role-Based Views – Conditional features and layouts for
patients vs. clinicians.

D. Data Storage and Time-Series Management

Adapters produce standardized JSON published to MQTT;
the backend (as subscriber) timestamps, authenticates, and pre-
pares data for storage. PostgreSQL provides relational storage,
while TimescaleDB handles time-series ingestion and querying
via hypertables (automatic time partitioning). Partitioning by
patient/time and indexes on IDs/timestamps enable fast filters
and trends. Non-biometric data (alerts, chat, events) reside
in separate schemas. Retention, compression, and archival
policies are managed by Timescale background jobs to balance
performance, cost, and lifecycle needs.

E. Data Flow

Wearables stream via BLE; the app discovers services
(GATT), subscribes to characteristics, normalizes readings,
and publishes to MQTT topics. The backend processes mes-
sages in near real time, persists them, and runs plugin analysis
(e.g., combined heart-rate/glucose spikes). On detection, an
alert is stored and pushed via MQTT; patient and physi-
cian apps receive it immediately. Secure WebSocket channels
support bidirectional messaging and acknowledgments. The
pipeline minimizes latency while isolating failures across
components.

F. Extensibility, Modularity, and Performance Considerations

C++26 services provide low-latency, multi-threaded paths
for parsing, routing, and analysis. Containerized microservices
scale horizontally; MQTT supports high concurrency with low
overhead; TimescaleDB sustains high read/write rates using
hypertables and compression. VM-backed deployments with
containers allow elastic scaling behind load balancers. Fault
tolerance includes retries, redundant instances, and database
replication.

Stress testing (qualitative). We simulated rising device counts
and high-frequency telemetry. Horizontal scaling (additional
service replicas) maintained throughput without noticeable
latency growth; the asynchronous C++ backend handled
thousands of concurrent streams, and redundancy/replication
avoided data loss during failover. Collectively, these measures
indicate readiness for real-world IoMT loads while preserving
real-time responsiveness.

IV. SYSTEM OPERATION FLOW

To better illustrate the practical operation of the system,
consider the following real-life scenario involving a patient
with diabetes and a cardiovascular condition.

The patient uses a body-worn glucose monitoring device
alongside a heart rate monitor, both of which communicate
with the patient’s smartphone via Bluetooth Low Energy

(BLE) technology. At 08:17 AM, the measured heart rate is
132 beats per minute, with the blood glucose level recorded as
210 mg/dL. Both readings are transmitted automatically to the
mobile app, where device-specific adapters are used to decode
the data and normalize it into structured JSON payloads.

Once the transformation process is complete, the
application publishes the data to the respective MQTT
topics—namely, /patient/{id}/heart_rate and
/patient/{id}/glucose—using the smartphone’s
internet connectivity. The cloud-based backend receives
messages within milliseconds because it is subscribed to the
above topics and designed to handle thousands of concurrent
data streams.

Once the data reaches the backend, it undergoes authenti-
cation, timestamping, and validation processes. Afterward, it
is stored in the TimescaleDB database to enable longitudinal
monitoring. At the same time, the system sends the readings
to a specifically designed real-time risk estimation plugin to
detect dangerous multi-signal patterns.

This plugin is aware that an increase in heart rate con-
currently with blood glucose levels can indicate a serious
health threat, such as cardiac stress due to hyperglycemia.
Therefore, this plugin immediately triggers an emergency
notification, logs the incident in the database, and the server
publishes a message to the /alerts/patient_id topic.
Both the patient receiving medical treatment and the physician
in charge of their care have signed up for this notification
service via their mobile applications. As a result, both are
given a push message in real time. The patient’s application
has a prominent red alert banner added to a list of emergency
recommendations, including rest, fluids, and the acquisition of
emergency medications that may be required. In contrast, the
doctor is given a complete overview of the patient’s vital signs,
trend history, and a structured list of recent measurements.

Realizing the urgency of the situation, the doctor initiates a
secure messaging session via the application’s inbuilt mes-
saging system, which is based on an ongoing WebSocket
connection. The doctor advises that the patient take a dose of
fast-acting insulin and continue to be monitored. The patient
acknowledges receiving the message, and both continue to
maintain their connection until the readings stabilize.

In this interaction, the system continuously collects, stores,
and evaluates data in real-time. Any significant future changes
trigger additional alerts, keeping both the patient and the physi-
cian adequately updated on time. This scenario underscores
how the system seamlessly bridges data collection, analysis,
and clinical response. The entire flow—from sensor to server
to human action—completes in seconds, demonstrating how
high-performance cloud infrastructure and modular architec-
ture can directly support timely, life-saving interventions in
an IoMT environment.

V. FUTURE WORK

While the proposed system provides a strong foundation for
real-time patient monitoring in IoMT environments, several
opportunities for future enhancement remain.

87



First, the current system supports specialized plugin mod-
ules for risk assessment purposes. However, they operate
independently and utilize manually defined heuristics. Future
research may focus on the development of more sophisticated,
cooperative plugin systems that can handle multiple signal
trends and apply dynamic rule learning based on historical
data sets. These improvements could significantly enhance the
early detection of complex medical events.

Second, the system’s scope can be extended to support a
broader range of wearable devices, including smartwatches
and multi-sensor health kits. To facilitate this, a standardized
plugin SDK for device vendors may be introduced, allow-
ing third-party developers to contribute data normalization
adapters and expand the supported device ecosystem with
minimal integration effort.

The mobile application, although built with offline support
and caching, can be further improved by integrating advanced
synchronization techniques, data prioritization algorithms, and
local trend analysis capabilities. These improvements would be
especially beneficial for residents of rural or underprivileged
communities where network access is usually poor.

The interoperability with health information systems is
a significant area for future research studies. The use of
standardized protocols, including HL7 FHIR and DICOM, is
promising because it can enable open communication between
the intended system and hospital Electronic Medical Records
(EMRs), improving the care loop and data transparency.

Implementing these guidelines would enhance the system,
resulting in a more comprehensive and intelligent healthcare
system that can efficiently manage various medical situations
while being flexible, secure, and easy to maintain.

VI. CONCLUSION

This paper presents a high-performance, cloud-focused ar-
chitecture for real-time patient monitoring in IoMT envi-
ronments, addressing the need for responsive, adaptive, and
modular healthcare solutions. The combination of lightweight
communication protocols, such as MQTT and WebSocket,
with modern C++ services and TimescaleDB optimized for
time series, enables the proposed system to achieve low-
latency data transmission, efficient processing, and a reliable
alerting mechanism during medical emergencies.

The use of modules for real-time risk assessment, container-
ized deployment strategies, and dedicated mobile applications
for both patients and medical professionals enables seam-
less information exchange, dynamic alerting, and continuous
communication across the care loop. The proposed system
not only ensures early detection of important health events
but also provides a flexible framework for future growth and
compliance with evolving medical guidelines.

Through its modular design, platform independence, and
extensibility, the proposed solution demonstrates how cloud
technologies can be effectively leveraged to meet the demands
of next-generation digital health platforms. It lays the ground-
work for further innovation in IoMT systems, promoting safer,
smarter, and more connected healthcare delivery.

REFERENCES

[1] C. Huang et al., “Internet of Medical Things: A systematic re-
view,” Neurocomputing, vol. 557, pp. 34–48, Nov. 2023, doi:
10.1016/j.neucom.2023.126719.

[2] S. B. Othman and M. Getahun, “Leveraging blockchain and IoMT for
secure and interoperable electronic health records,” Scientific Reports,
vol. 15, no. 1, Art. no. 12358, Apr. 2025, doi: 10.1038/s41598-025-
95531-8.

[3] L. P. Serrano et al., “Benefits and challenges of remote patient
monitoring as perceived by health care practitioners: A systematic
review,” The Permanente Journal, vol. 27, no. 4, pp. 100–111, 2023,
doi: 10.7812/TPP/23.022.

[4] K. Boikanyo, M. Adamu, B. Sigweni, A. Yahya, and C. Lebekwe,
“Remote patient monitoring systems: Applications, architecture, and
challenges,” Scientific African, vol. 19, Art. no. e01638, 2023, doi:
10.1016/j.sciaf.2023.e01638.

[5] J. Mateo-Fornés et al., “An Internet of Things platform based on
microservices and cloud paradigms for livestock,” Sensors, vol. 21,
no. 17, Art. no. 5949, Sep. 2021, doi: 10.3390/s21175949.

[6] A. Ahila et al., “A smart IoMT-based architecture for E-healthcare
patient monitoring system using artificial intelligence algorithms,”
Frontiers in Physiology, vol. 14, Art. no. 1125952, Jan. 2023, doi:
10.3389/fphys.2023.1125952.

[7] F. Shahid et al., “Adaptive lightweight security for performance effi-
ciency in critical healthcare monitoring,” in Proc. 14th IEEE Int. Symp.
Medical Information and Communication Technology (ISMICT), pp.
1–6, May 2024, doi: 10.1109/ISMICT61996.2024.90738175.

[8] F. Nehru and A. Yudertha, “A proposed design of real-time patient
monitoring system using WebSocket as a basis of telemedicine,” in
Proc. SICONIAN 2019 – Sriwijaya Int. Conf. on Information Technol-
ogy and Its Applications, Adv. Intell. Syst. Res., vol. 172, pp. 263–268,
2020, doi: 10.2991/aisr.k.200424.040.

[9] N. Kirilov and M. Dugas, “Evaluation of technical approaches for real-
time data transfer from electronic health record systems,” Computer
Methods and Programs in Biomedicine, vol. 255, Art. no. 108347,
2024, doi: 10.1016/j.cmpb.2024.108347.

[10] M. A. Khan et al., “Smart Steering Wheel: Design of IoMT-based
non-invasive driver health monitoring system to enhance road safety,”
IET Intelligent Transport Systems, vol. 19, no. 1, Art. no. e70012, Jan.
2025, doi: 10.1049/itr2.70012.

88


