
Performance of Linear Algebra Symmetric and

Hermitian 𝑘 and 2𝑘 Rank Update in Multi-Accelerator

Architectures

Edita Gichunts

Institute for Informatics and Automation Problems of NAS RA,

Yerevan, Armenia

e-mail: editagich@iiap.sci.am

 Abstract—Symmetric and Hermitian rank-k and rank-2k

updates are crucial in various linear algebra problems. This

paper presents implementations of symmetric and Hermitian

updates of rank-k and rank-2k on two Volta 100 graphics

processors, tested in both single and double precision. The

implementations were performed using the cublasXt and

Magma libraries.

 The objective of this paper isto provide performance

estimates for symmetric and Hermitian updates of rank-k and

rank-2k on two GPUs and to determine which of the cublasXt

or Magma libraries is more efficient when applied to these

problems.

Keywords— Multiple GPUs, cuBLASXt, MAGMA.

I. INTRODUCTION

In recent years, general-purpose graphics processors have

emerged as one of the most widely used topics in high-

performance computing. The popularity of hybrid GPU-

based systems began with the advent of the NVIDIA CUDA

(Compute Unified Device Architecture) architecture [1] and
the extensions of standard programming languages such as

C, C++, and Fortran.

In the hybrid system, linear algebra problems are

addressed using the cuBlas [2] and MAGMA [3] libraries,

which include matrix-vector and matrix-matrix operations, as

well as various linear algebra problems, including

factorizations, solutions of systems of linear equations,

finding eigenvalues and vectors, and performing various

transformations.

For solving linear algebra problems in multi-GPU

architectures, the cuBlasXt [4] library from cuBlas and the
MAGMA library subroutines, which are designed for multi-

GPUs, are used.

The cuBLASXt API serves as a host interface and

supports several graphics processors. The cuBLASXt API

supports only the BLAS3 [5,6] subroutines, which consist of

matrix-matrix operations, symmetric and Hermitian k-rank

and 2k-rank update problems.

This paper outlines the algorithmic steps for

implementing symmetric and Hermitian rank-k and rank-2k

update problems on two GPUs using the cuBLASXt and

MAGMA libraries. It includes performance graphs for these

problems in both single and double precision on two GPUs

using the Magma and cuBLASXt libraries, as well as

performance comparison graphs for these two libraries. The

goal is to find out which of these libraries is more efficient to

use and under what circumstances.

II. IMPLEMENTATION STEPS IN A MULTI-GPU ARCHITECTURE

The implementations of symmetric and Hermitian k and

2k rank updates on 2 GPUs were performed using the

cublasXt and Magma 2.6.0 libraries.

 Below, we outline the algorithmic steps of these

implementations for symmetric 2k rank updates in the cases

of using these two libraries: cublasXt and Magma.

In case of using the cublasXt library:

1. We include the following header files:
#include <cuda.h>

#include <cuda_runtime_api.h>

#include <cublas.h>

#include <cublas_v2.h>

#include <cublasXt.h>

2. The cuBLASXt API context is initialized:

cublasXtHandle_t handle,

cublasXtCreate(&handle).

3. We give the number of GPU devices used and their

corresponding IDs. In the case of two GPUs, it will be:

constintnDevices = 2,

intdeviceId[nDevices] = {0, 1}.
4. We call the cublasXtDeviceSelect() function, which

allows the user to specify the number of GPU devices and

their corresponding IDs. This function creates a cuBLAS

context for each GPU in the list:

cublasXtDeviceSelect(handle, nDevices, deviceId).

5. Before calling the cublasXt function, we use the start-time

function:

cudaEventRecord(start, 0).

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_20 89

6. We call the calculation subroutine:

cublasXtSsyr2k(handle,

CUBLAS_FILL_MODE_LOWER, CUBLAS_OP_N,
n, n, &alpha, a, n, b, n,&beta, c, n), where we have

already introduced the necessary parameters to be

included in the subroutine.

7. Once the subroutine concludes, the end time function is

called:

cudaEventRecord(stop, 0).

8. To calculate the time elapsed between the start and end of

the program, we use the following function:

cudaEventElapsedTime(&time_seconds, start, stop),

which returns the first argument of the function.

9. After the program concludes, the cuBLASXt API context

should be destroyed:
cublasXtDestroy (handle).

In case of using Magma library:

1. We include the following header files:

#include <cuda.h>

#include <cuda_runtime_api.h>

#include <magma.h>

#include <magma_v2.h>

#include "magma_lapack.h"

2. The MAGMA library is initialized:
magma_init().

3. Memory is allocated for matrices on the CPU:

magma_smalloc_cpu(&hC, lda*n);

magma_smalloc_cpu(&hR, lda*n);

magma_smalloc_cpu(&hA, lda*k);

magma_smalloc_cpu(&hB, lda*k).

4. Local memory is allocated for the matrices distributed on

the GPUs, moving from GPU to GPU in a cycle. In each, the

magma_setdevice(dev) function is first called, then the

memory allocation functions:

magma_smalloc(&dC[dev], ldda*nlocal);

magma_smalloc(&dA[dev], ldda*k*2):
Note that nlocal = ((n / nb) / ngpu + 1) * nb.

5. The C matrix is moved to the GPU memory using the

following function:

magma_ssetmatrix_1D_col_bcyclic(n, n, hC,lda, dC,

ldda, opts.ngpu, nb).

6. The A and B matrices are transferred to the GPU memory

by cycling between GPUs using the following functions:

magma_ssetmatrix(n, k, hA, lda, dA[dev], ldda),

magma_ssetmatrix(n, k, hB, lda, dB[dev], ldda).

7. Next, we fix the execution time using the

gpu_time =magma_wtime() function.
8. The

magmablas_ssyr2k_mgpu2(MagmaLower,

MagmaNoTrans, n, k, alpha, dA, ldda, 0, dB, ldda,

0, beta, dC, ldda, offset, ngpu, nb, queues, nqueue)

subroutine is then called, which performs the symmetric 2k

rank update in parallel across the GPUs.

 Note that all the necessary parameters required for the

subroutine have been defined in the program beforehand.

9. gpu_time = magma_sync_wtime(0) - Using the difference

gpu_time we get the calculation execution time.
10. After the calculations are complete, the results obtained

from the GPUs are transferred to the CPU memory using the

following function:

magma_sgetmatrix_1D_col_bcyclic(n, n, dC, ldda,

hR, lda, opts.ngpu, nb).
11. At the end of the program, the memory allocated on the

CPU is cleared:

magma_free_cpu(hC);

magma_free_cpu(hR);

magma_free_cpu(hA);

magma_free_cpu(hB).

12. We free the memory allocated on the GPUs by moving

from GPU to GPU in a loop, first calling the

magma_setdevice(dev), then the magma_free(dC[dev]) and

magma_free(dA[dev]) functions.

13. We terminate MAGMA using the magma_finalize()

function.

III. EXPERIMENTAL RESULTS

The research was conducted on two NVIDIA Tesla

V100-PCIE graphics processors using the cublasXt and

Magma libraries. The cuda-10.2 platform was used for

parallel calculations. To install the MAGMA 2.6.0 library,

the BLAS, LaPack, cLaPack, ATLAS libraries, and the

following static (.a), dynamic (.so) libraries were loaded:

libgfortran.a, libf77blas.a, libcblas.a, libf2c.a, libm.a,

libstdc++.a, libpthread.a, libdl.a, libcublas.so, libcudart.so,

libcusparse.so, libcudadevrt.a. The gcc, g++, nvcc, gfortran

compilers were used to compile the MAGMA library.
We will present the results of the experiments in the form

of graphs.

Figures 1 and 2 illustrate the performance graphs of

symmetric k and 2k rank updates on 2 GPUs using the

Magma library, respectively.

Fig. 1. k-rank

0

1

2

3

4

5

6

0 10000 20000 30000 40000

single

double

Matrix size

G
Fl
o
p
/s

0

2

4

6

8

10

12

0 10000 20000 30000 40000

single

double

Matrix size

G
Fl
o
p
/s

Fig. 2. 2k-rank

90

Figures 3 and 4 display the performance graphs of symmetric

k and 2k rank updates on 2 GPUs using the cublasXt library,
respectively.

Fig. 3. k-rank

Fig. 4. 2k-rank

Figures 5 and 6 illustrate the performance difference graphs

for symmetric k and 2k rank updates on 2 GPUs using the

Magma library, presented in both single and binary

precision, respectively.

 Fig. 5. Single presicion

Fig. 6. Double presicion

Figures 7 and 8 display the performance difference graphs
for Hermitian k and 2k rank updates on 2 GPUs using the

Magma library in single and binary precision, respectively.

Fig. 7. Single complex presicion

Fig. 8. Double complex presicion

Figures 9 and 10 provide the performance difference graphs

for symmetric k rank updates on 2 GPUs using the Magma
and cublasXt libraries in single and binary precision,

respectively.

0

1

2

3

4

0 20000 40000

single

double

Matrix size

G
Fl
o
p
/s

0

0.5

1

1.5

0 10000 20000 30000 40000

single

double

Matrix size

G
Fl
o
p
/s

0

1

2

3

4

5

6

0 10000 20000 30000 40000

Ssyrk

Ssyr2k

Matrix size

G
Fl
o
p
/s

0

2

4

6

8

10

12

0 10000 20000 30000 40000

Dsyrk

Dsyr2k

Matrix size

G
Fl
o
p
/s

0

1

2

3

4

5

6

0 10000 20000 30000

Cherk

Cher2k

Matrix size

G
Fl
o
p
/s

0

2

4

6

8

10

12

0 10000 20000 30000

Zherk

Zher2k

Matrix size

G
Fl
o
p
/s

91

Fig. 9. Single k-rank

Fig. 10. Double k-rank

Figures 11 and 12 show the performance difference graphs

for symmetric 2k rank update on 2 GPUs using the Magma

and cublasXt libraries in both single and binary precision,

respectively.

Fig. 11. Single 2k-rank

 Fig. 12. Double 2k-rank

IV. CONCLUSION

As mentioned above, the implementations were

performed on two Volta 100 GPUs using the MAGMA 2.6.0

library.

The following results were obtained from the experiments:

 When using the Magma library, the performance of

binary precision for symmetric k-rank and 2k-rank

updates is 2 times higher than the performance of

single precision.

 When using the cublasXt library, the performance

of binary precision for symmetric updates of rank k

is 2 times higher than that of single precision, and

for updates of rank 2k, the performance of binary
precision is initially 2 times higher than that of

single precision, and then it decreases to 1.5 times.

 When using the Magma library, the performance of

symmetric updates of rank 2k for both single and

binary precision is 2 times higher than that of k.

 In the case of Hermitian rank, the performance of

rank 2k updates for single and double precision is 2

times higher than that of rank k updates.

 In the case of symmetric rank k updates in single

and double precision, the cublasXt library is 2 times

more efficient for matrices with dimensions up to
25000, and the Magma library proves to be much

more efficient for matrices with larger dimensions.

 In the case of symmetric rank 2k updates in single

and double precision, the cublasXt library is 1.5

times more efficient for matrices with dimensions

up to 15000. Meanwhile, the Magma library is 2-5

times more efficient for matrices with larger

dimensions.

REFERENCES

[1] NVIDIA, “NVIDIA CUDA Parallel Computing Platform”,

[Online]. Available:

http://www.nvidia.com/object/cuda_home_new.html, NVIDIA,

2013.

[2] CUDA Nvidia. Cublas library. NVIDIA Corporation, Santa

Clara, California, 15, 2008.

[3] “MAGMA Matrix Algebra on GPU and Multicore

Architectures”, [Online]. Available:

http://icl.cs.utk.edu/magma/, 2014.

[4] [Online]. Available:

https://docs.nvidia.com/cuda/cublas/index.html#using-the-

cublasxt-api.

[5] J. Dongarra, J. Cruz, S. Hammerling and I. S. Duff, Algorithm

679: A Set of Level 3 Basic Linear Algebra Subprograms: Model

Implementation and Test Programs”, ACM Trans. Math. Softw.,

vol.16, no. 1, pp.18–28, March 1990.

[6] J. Dongarra, J. Du Croz, S. Hammarling and I. S. Duff, “A Set of

Level 3 Basic Linear Algebra Subprograms”, ACM Trans. Math.

Softw., vol.16, no. 1, pp.1–17, March 1990.

0

0.5

1

1.5

2

2.5

3

0 20000 40000

Xtsingle

Masingle

Matrix size

G
Fl
o
p
/s

0

1

2

3

4

5

6

0 20000 40000

Xtdouble

Madouble

Matrix size

G
Fl
o
p
/s

0

1

2

3

4

5

6

0 10000 20000 30000 40000

Xtsingle

Masingle

Matrix size

G
Fl
o
p
/s

0

2

4

6

8

10

12

0 20000 40000

Xtdouble

Madouble

Matrix size

G
Fl
o
p
/s

92

https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasxt-api
https://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasxt-api

	I. Introduction
	II. Implementation Steps in a Multi-GPU Architecture
	III. Experimental Results
	IV. Conclusion
	References

