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     Abstract—Symmetric and Hermitian rank-k and rank-2k 

updates are crucial in various linear algebra problems. This 

paper presents implementations of symmetric and Hermitian 

updates of rank-k and rank-2k on two Volta 100 graphics 

processors, tested in both single and double precision. The 

implementations were performed using the cublasXt and 

Magma libraries. 

     The objective of this paper isto provide performance 

estimates for symmetric and Hermitian updates of rank-k and 

rank-2k on two GPUs and to determine which of the cublasXt 

or Magma libraries is more efficient when applied to these 

problems. 
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I. INTRODUCTION 

In recent years, general-purpose graphics processors have 

emerged as one of the most widely used topics in high-

performance computing. The popularity of hybrid GPU-

based systems began with the advent of the NVIDIA CUDA 

(Compute Unified Device Architecture) architecture [1] and 
the extensions of standard programming languages such as 

C, C++, and Fortran. 

In the hybrid system, linear algebra problems are 

addressed using the cuBlas [2] and MAGMA [3] libraries, 

which include matrix-vector and matrix-matrix operations, as 

well as various linear algebra problems, including 

factorizations, solutions of systems of linear equations, 

finding eigenvalues and vectors, and performing various 

transformations. 

For solving linear algebra problems in multi-GPU 

architectures, the cuBlasXt [4] library from cuBlas and the 
MAGMA library subroutines, which are designed for multi-

GPUs, are used. 

The cuBLASXt API serves as a host interface and 

supports several graphics processors. The cuBLASXt API 

supports only the BLAS3 [5,6] subroutines, which consist of 

matrix-matrix operations, symmetric and Hermitian k-rank 

and 2k-rank update problems. 

This paper outlines the algorithmic steps for 

implementing symmetric and Hermitian rank-k and rank-2k 

update problems on two GPUs using the cuBLASXt and 

MAGMA libraries. It includes performance graphs for these 

problems in both single and double precision on two GPUs 

using the Magma and cuBLASXt libraries, as well as 

performance comparison graphs for these two libraries. The 

goal is to find out which of these libraries is more efficient to 

use and under what circumstances. 

II. IMPLEMENTATION STEPS IN A MULTI-GPU ARCHITECTURE

The implementations of symmetric and Hermitian k and

2k rank updates on 2 GPUs were performed using the 

cublasXt and Magma 2.6.0 libraries. 

 Below, we outline the algorithmic steps of these 

implementations for symmetric 2k rank updates in the cases 

of using these two libraries: cublasXt and Magma. 

In case of using the cublasXt library: 

1. We include the following header files:
#include <cuda.h> 

#include <cuda_runtime_api.h> 

#include <cublas.h> 

#include <cublas_v2.h> 

#include <cublasXt.h> 

2. The cuBLASXt API context is initialized:

cublasXtHandle_t handle, 

cublasXtCreate(&handle). 

3. We give the number of GPU devices used and their

corresponding IDs. In the case of two GPUs, it will be: 

constintnDevices = 2, 

intdeviceId[nDevices] = {0, 1}. 
4. We call the cublasXtDeviceSelect() function, which

allows the user to specify the number of GPU devices and 

their corresponding IDs. This function creates a cuBLAS 

context for each GPU in the list: 

cublasXtDeviceSelect(handle, nDevices, deviceId). 

5. Before calling the cublasXt function, we use the start-time

function: 

cudaEventRecord(start, 0). 
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6. We call the calculation subroutine:

cublasXtSsyr2k(handle, 

CUBLAS_FILL_MODE_LOWER, CUBLAS_OP_N, 
n, n, &alpha, a, n, b, n,&beta, c, n), where we have 

already introduced the necessary parameters to be 

included in the subroutine. 

7. Once the subroutine concludes, the end time function is

called: 

cudaEventRecord(stop, 0). 

8. To calculate the time elapsed between the start and end of

the program, we use the following function: 

cudaEventElapsedTime(&time_seconds, start, stop), 

which returns the first argument of the function. 

9. After the program concludes, the cuBLASXt API context

should be destroyed: 
cublasXtDestroy ( handle ). 

In case of using Magma library: 

1. We include the following header files:

#include <cuda.h> 

#include <cuda_runtime_api.h> 

#include <magma.h> 

#include <magma_v2.h> 

#include "magma_lapack.h" 

2. The MAGMA library is initialized:
magma_init(). 

3. Memory is allocated for matrices on the CPU:

magma_smalloc_cpu(&hC, lda*n ); 

magma_smalloc_cpu(&hR, lda*n ); 

magma_smalloc_cpu(&hA, lda*k ); 

magma_smalloc_cpu(&hB, lda*k ). 

4. Local memory is allocated for the matrices distributed on

the GPUs, moving from GPU to GPU in a cycle. In each, the 

magma_setdevice(dev) function is first called, then the 

memory allocation functions: 

magma_smalloc(&dC[dev], ldda*nlocal ); 

magma_smalloc(&dA[dev], ldda*k*2 ): 
Note that nlocal = ((n / nb) / ngpu + 1) * nb. 

5. The C matrix is moved to the GPU memory using the

following function: 

magma_ssetmatrix_1D_col_bcyclic(n, n, hC,lda, dC, 

ldda, opts.ngpu, nb ). 

6. The A and B matrices are transferred to the GPU memory

by cycling between GPUs using the following functions: 

magma_ssetmatrix( n, k, hA, lda, dA[dev], ldda ), 

magma_ssetmatrix( n, k, hB, lda, dB[dev], ldda ). 

7. Next, we fix the execution time using the

gpu_time =magma_wtime() function. 
8. The

magmablas_ssyr2k_mgpu2(MagmaLower, 

MagmaNoTrans, n, k, alpha, dA, ldda, 0, dB, ldda,  

0, beta, dC, ldda, offset, ngpu, nb, queues, nqueue ) 

subroutine is then called, which performs the symmetric 2k 

rank update in parallel across the GPUs. 

 Note that all the necessary parameters required for the 

subroutine have been defined in the program beforehand. 

9. gpu_time = magma_sync_wtime(0) - Using the difference

gpu_time we get the calculation execution time. 
10. After the calculations are complete, the results obtained

from the GPUs are transferred to the CPU memory using the 

following function: 

magma_sgetmatrix_1D_col_bcyclic( n, n, dC, ldda, 

hR, lda, opts.ngpu, nb ). 
11. At the end of the program, the memory allocated on the

CPU is cleared: 

magma_free_cpu(hC ); 

magma_free_cpu(hR ); 

magma_free_cpu(hA ); 

magma_free_cpu(hB ). 

12. We free the memory allocated on the GPUs by moving

from GPU to GPU in a loop, first calling the 

magma_setdevice(dev), then the magma_free( dC[dev] ) and 

magma_free(dA[dev]) functions. 

13. We terminate MAGMA using the magma_finalize()

function. 

III. EXPERIMENTAL RESULTS

The research was conducted on two NVIDIA Tesla 

V100-PCIE graphics processors using the cublasXt and 

Magma libraries. The cuda-10.2 platform was used for 

parallel calculations. To install the MAGMA 2.6.0 library, 

the BLAS, LaPack, cLaPack, ATLAS libraries, and the 

following static (.a), dynamic (.so) libraries were loaded: 

libgfortran.a, libf77blas.a, libcblas.a, libf2c.a, libm.a, 

libstdc++.a, libpthread.a, libdl.a, libcublas.so, libcudart.so, 

libcusparse.so, libcudadevrt.a. The gcc, g++, nvcc, gfortran 

compilers were used to compile the MAGMA library. 
We will present the results of the experiments in the form 

of graphs. 

Figures 1 and 2 illustrate the performance graphs of 

symmetric k and 2k rank updates on 2 GPUs using the 

Magma library, respectively. 

Fig. 1. k-rank 
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Figures 3 and 4 display the performance graphs of symmetric 

k and 2k rank updates on 2 GPUs using the cublasXt library, 
respectively. 

Fig. 3. k-rank 

Fig. 4. 2k-rank 

Figures 5 and 6 illustrate the performance difference graphs 

for symmetric k and 2k rank updates on 2 GPUs using the 

Magma library, presented in both single and binary 

precision, respectively. 

 Fig. 5. Single presicion 

Fig. 6. Double presicion 

Figures 7 and 8 display the performance difference graphs 
for Hermitian k and 2k rank updates on 2 GPUs using the 

Magma library in single and binary precision, respectively. 

Fig. 7. Single complex presicion 

Fig. 8. Double complex presicion 

Figures 9 and 10 provide the performance difference graphs 

for symmetric k rank updates on 2 GPUs using the Magma 
and cublasXt libraries in single and binary precision, 

respectively. 
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Fig. 9. Single k-rank 

Fig. 10. Double k-rank 

Figures 11 and 12 show the performance difference graphs 

for symmetric 2k rank update on 2 GPUs using the Magma 

and cublasXt libraries in both single and binary precision, 

respectively. 

Fig. 11. Single 2k-rank 

  Fig. 12. Double 2k-rank 

IV. CONCLUSION

As mentioned above, the implementations were 

performed on two Volta 100 GPUs using the MAGMA 2.6.0 

library. 

The following results were obtained from the experiments: 

 When using the Magma library, the performance of 

binary precision for symmetric k-rank and 2k-rank 

updates is 2 times higher than the performance of 

single precision. 

 When using the cublasXt library, the performance 

of binary precision for symmetric updates of rank k 

is 2 times higher than that of single precision, and 

for updates of rank 2k, the performance of binary 
precision is initially 2 times higher than that of 

single precision, and then it decreases to 1.5 times. 

 When using the Magma library, the performance of 

symmetric updates of rank 2k for both single and 

binary precision is 2 times higher than that of k. 

 In the case of Hermitian rank, the performance of 

rank 2k updates for single and double precision is 2 

times higher than that of rank k updates. 

 In the case of symmetric rank k updates in single 

and double precision, the cublasXt library is 2 times 

more efficient for matrices with dimensions up to 
25000, and the Magma library proves to be much 

more efficient for matrices with larger dimensions. 

 In the case of symmetric rank 2k updates in single 

and double precision, the cublasXt library is 1.5 

times more efficient for matrices with dimensions 

up to 15000. Meanwhile, the Magma library is 2-5 

times more efficient for matrices with larger 

dimensions. 
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