
Validation and Sanitization of User-Entered Data for
Security Purposes

 Elisabed Asabashvili

University of Georgia
Tbilisi, Georgia

e-mail: z.asabashvili@ug.edu.ge

Abstract—The integration of digital devices and the internet
has transformed modern life, improving communication, work,
and daily routines. However, this digital shift introduces new
cybersecurity challenges. The increasing dependence on online
platforms has made individuals, businesses, and organizations
more vulnerable to cyber threats, elevating data security to a
critical concern. The pandemic, the rise of cryptocurrencies, and
the shift to remote work have further created ideal conditions for
cybercriminals to exploit, making cybersecurity an essential
component of the modern business environment.

Cybersecurity encompasses the use of technologies,
processes, and controls to defend systems, networks, software,
and data from cyberattacks, such as phishing, data breaches,
identity theft, financial fraud, and ransomware.

The Ruby programming language—known for its flexibility
and rich feature set—plays a valuable role in cybersecurity by
enabling the development of tools and scripts for threat detection
and vulnerability assessment. This article showcases code
written in Ruby, utilizing validation and sanitization processes to
enhance application security. It explains the importance of
validation, which ensures that user input meets predefined
formats, such as valid email addresses or phone numbers,
thereby preventing the entry of invalid or malicious data. The
article also introduces sanitization, a process that cleans input by
removing harmful characters to guard against threats like cross-
site scripting (XSS) and SQL injection.

Together, validation and sanitization form a robust defense
mechanism that helps protect applications from security
vulnerabilities, maintain data integrity, enhance user experience,
and ensure system stability.

Keywords—Validation, Sanitization, Regex, Ruby Libraries,
Cybersecurity.

I. INTRODUCTION
In 2020, Cybercrime Magazine reported that by 2025,

cybercrime would cost the global economy an estimated $10.5
trillion annually [3]. Furthermore, global spending on
combating cybercrime is projected to grow by nearly 15% per
year over the next four years. This forecast was echoed by
Cybersecurity Ventures, a leading research and media
organization known for its authoritative insights, market
analysis, and forecasts on cybersecurity trends and the

1 Artificial intelligence (AI) and automation are related but distinct
concepts. While automation focuses on performing tasks according
to fixed rules, AI embeds intelligence by allowing systems to learn,

economic impact of cybercrime. According to its “Official
Cybercrime Report 2025”, cybercrime is expected to cost the
world $12.2 trillion annually by 2031 [4]. In the United States
alone, cybercrime-related costs are rising sharply and are
forecasted to reach approximately $1.82 trillion by 2028 [5].

Cybersecurity is a broad field, typically divided into
several key areas [11]:

- Application Security;
- Cloud Security;
- Identity Management and Data Security;
- Mobile Security (tablets, cell phones, and laptops);
- Network Security.

As is known, the term “hacking”, which originated in the
1960s, refers to unauthorized access to personal information
[8]. Today, with the advent of artificial intelligence (AI) and
process automation 1 , cybercriminals are able to conduct
attacks with unprecedented speed and sophistication. Attacks
on IT infrastructure, government and military systems, and on
personal devices are increasing rapidly. Many organizations
remain ill-prepared to defend against such attacks, prompting
a global push to invest in advanced cybersecurity tools and
strategies to safeguard digital systems for individuals,
businesses, and governments alike.

Meanwhile, hacking itself has evolved—often progressing
as fast, or even faster, than defensive measures. Two main
categories of hackers have emerged [7]:

Malicious hackers, who exploit systems with the intent to
cause harm, steal data, or disrupt operations.

Ethical hackers, who use the same techniques to identify
vulnerabilities but report them to the appropriate security
teams to prevent exploitation.

Ethical hackers play a critical role in modern
cybersecurity. Their responsibilities typically include:

 Creating vulnerability testing scripts;
 Developing security tools;
 Conducting risk assessments;
 Reviewing security policies;
 Training network security personnel.

This practice, known as ethical hacking, serves as a
proactive defense strategy—helping organizations discover

adapt, and make decisions autonomously. AI-powered automation
combines the two, enabling more flexible and intelligent process
automation.

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_31 129

and fix weaknesses before they can be exploited by malicious
actors.

In today's increasingly digital world, cyber threats are
becoming more advanced and widespread. As a result,
cybersecurity has become a fundamental component of
software development, especially since applications often
handle sensitive data and perform critical functions that
require robust protection.

Although Ruby is not the only language used in
cybersecurity, it remains a valuable tool due to its simplicity,
readability, and rich set of libraries. Ruby is a dynamic, open-
source programming language designed for productivity and
ease of use [6]. Its clean and expressive syntax makes it ideal
for writing custom scripts and building specialized tools for
security analysis and penetration testing. For cybersecurity
professionals, Ruby’s flexibility makes it a practical and
efficient language for developing solutions aimed at
protecting applications and digital infrastructure.

II. THREAT MODELING IN APPLICATION DEVELOPMENT
Threat modeling involves identifying potential threats to a

system and understanding how, why, and where an attacker
might exploit it. In web applications, user input is often the
most vulnerable entry point. Understanding the attack surface
helps in applying the right validation and sanitization
techniques. Models such as STRIDE (Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service,
Elevation of Privilege) are commonly used to guide security
decisions.

III. USER INPUT VALIDATION AND SANITIZATION
Input validation and sanitization are essential components

of web application security, ensuring that user input follows
the expected format and is free from malicious content. These
practices help prevent common security vulnerabilities such
as SQL injection, cross-site scripting (XSS), and other forms
of data manipulation. In Ruby, developers have access to a
variety of built-in methods and external libraries to implement
robust validation and sanitization mechanisms [1, 12].

This article demonstrates the use of several such
techniques by presenting Ruby code that performs both input
validation and, when necessary, sanitization—ensuring data is
clean and secure before further processing [2].

The article includes a script that checks the validity of an
email address, illustrating how to validate and sanitize user
input effectively within a Ruby application.

IV. COMPLEX INPUT SCENARIOS AND REAL-WORLD
ATTACK VECTORS

As stated, the report used a programming language to
validate and sanitize input data using both built-in Ruby
methods and external libraries. It should be noted that
Sanitization is the process of removing or modifying
potentially dangerous data from user input to prevent security
vulnerabilities. It protects systems from malicious input that
can be used to execute malicious commands, leading to data
leaks, unauthorized access, and other security issues.

Validation in Ruby, particularly within the context of
cybersecurity, primarily refers to input validation (to prevent

attacks like SQL injection, Cross-Site Scripting (XSS), and
other injection vulnerabilities) and data validation (to
maintain data integrity and consistency within the application
and database). This is a critical security measure to prevent
various attacks by ensuring that data received by an
application is in the expected format and free from malicious
content.

The article includes a script that checks the validity of an
email address, illustrating how to validate and sanitize user
input effectively within a Ruby application.

Validation ensures that input conforms to expected
formats. For example:

• Emails must follow a standard pattern (e.g.,
user@example.com)

• Phone numbers must contain only digits and
specific characters

• Form fields must not exceed a reasonable length
Ruby makes this easy with Regular Expressions (Regex)

and libraries like ActiveModel::Validations that enforce rules
seamlessly. These functions verify that the email address
string conforms to a valid pattern. This check can prevent
incorrect or malicious data from entering the system.

Even validated input can carry hidden threats. Sanitization
involves stripping or escaping harmful characters or scripts
that could compromise the application. For instance, HTML
tags in user comments can be sanitized to prevent XSS attacks.

Ruby offers libraries like sanitize or Loofah. By removing
dangerous tags or attributes, sanitization helps neutralize
potentially harmful input before it interacts with the
application or database.

In addition to guarding against XSS and SQL injection,
developers must also consider other web vulnerabilities that
exploit input or session context. One such threat is Cross-Site
Request Forgery (CSRF), where a malicious site tricks a user
into submitting unintended requests to a web application
where they’re authenticated.

Mitigating CSRF involves proper session management,
the use of anti-CSRF tokens, and the enforcement of same-
origin policies. These practices are essential complements to
input validation and sanitization, ensuring a well-rounded
defense against common web attacks.

V. RUBY CODE
require 'uri'
require 'cgi'
 user_input="<script>alert('Hacked!');</script>

user@example.com"
 def sanitize_input(input)
CGI.escapeHTML(input)
end
 def valid_email?(email)
 # email regex validation
 !!(/\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i.match?(email))
end
 # Applying sanitization
safe_input = sanitize_input(user_input)
puts "Sanitized input: #{safe_input}"
 # Extracting possible email from input (e.g., from a

string)
extracted_email = user_input[/[\w+\-.]+@[a-z\d\-.]+\.[a-

z]+/i]

130

if extracted_email && valid_email?(extracted_email)
 puts "Valid email detected: #{extracted_email}"
else
 puts "No valid email found."
end

After running the code, the result of Sanitize and
confirmation of the existence of the specified email address
was obtained with the following output:

Sanitized input:

<script>alert('Hacked!'); </script>
user@example.com

Valid email detected: user@example.com

Sanitization involves removing potentially malicious

HTML/JS files and cleaning them using CGI. The Common
Gateway Interface (CGI) is a simple protocol that allows web
servers to pass HTTP requests to standalone programs and
return the output to a web browser, i.e, it is a set of standards
that define how information is exchanged between a web
server and a user script.

The address user@example.com used is not a real email
address; it is a placeholder address used in documentation and
examples to indicate a generic email address. The domain
example.com is reserved specifically for this purpose by the
Internet Assigned Numbers Authority (IANA). It is used in
examples to avoid using real email addresses that could cause
confusion or unintended consequences, although the code in
question actually works to validate any address provided.

In the Ruby code, the validation and sanitization of the
input data where performed as follows. At the beginning of
the code, the following lines were used:

require 'uri'
require 'cgi'
user_input="<script>alert('Hacked!');</script>user@exa-

mple.com"

where require 'uri' and require 'cgi' are the standard Ruby

libraries [9].
URI can be used to parse and validate URLs, while CGI is

used here to sanitize HTML input by escaping unsafe
characters such as „<“, „>“ and „&“.

In this code, the sanitization function is defined by the
following lines:

def sanitize_input(input)
 CGI.escapeHTML(input)
end

where CGI.escapeHTML(input) replaces HTML
characters: „<“ becomes < „>“ becomes > Prevents
Cross-Site Scripting (XSS) attacks by neutralizing
HTML/JavaScript in input.

def valid_email?(email)

 !!(/\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i.match?(email))
end

In code uses a regular expression (regex) in code to check

if the string looks like an email. A regular expression, or regex

for short, is a sequence of characters that defines a search
pattern. This powerful tool is used by many programming
languages and text editors to search, match, and process text
strings. Regex is useful for tasks such as data validation,
parsing, and text processing.

The regular expression /\A...\z/ anchors the match to the start

and end of the string.
While the record !!(...) turns the result into a boolean (true or

false).
It is worth mentioning here in a few words that the regular

expression:

[\w+\-.]+ is a Local part (e.g., First name.Last name);
@ ⇒ The @ symbol;
[a-z\d\-.]+ ⇒ Domain (e.g., example); and
\.[a-z]+ ⇒ TLD (e.g., .com).

The next part of the code is:

safe_input = sanitize_input(user_input)
puts "Sanitized input: #{safe_input}"

which takes potentially unsafe input (with HTML/JS) and

escapes it for safe display or storage.
String:

extracted_email=user_input[/[\w+\-.]+@[a-z\d\-.]+\.[a-z]+/i]

uses regex to find an email-like string in the input (even if
it is mixed with other data).

with the help of a code snippet

if extracted_email && valid_email?(extracted_email)
 puts "Valid email detected: #{extracted_email}"
else
 puts "No valid email found."
end

if an email is found and it passes validation, it's reported.

So the given code mainly uses:
• a regular expression (regex) to check if the string

looks like an email;
• /\A...\z/ anchors the match to the start and end of the

string. In regular expressions, "anchors" are special
characters that don’t match actual characters in the
input — instead, they match positions in the string.
Anchors are used to "anchor" the match to certain
parts of the string, like the beginning or the end;

• !!(...) turns the result into a boolean (true or false).

The article also develops a Ruby code that can be used in

cases where there is a need to check the validity of phone
numbers. Depending on what kind of output we want to get,
that is, whether we want to output the values as text or as a
logical variable, the code will have a) in the first case:

def valid_phone?(phone)

 # Match format: +995 599 123 456 or
+995599123456

131

mailto:user@example.com
mailto:user@exa-mple.com
mailto:user@exa-mple.com
mailto:+@%5Ba-z%5Cd%5C-.%5d+%5C.%5ba-z%5d+/i

regex = /\A\+?995[\s-]?5\d{2}[\s-]?\d{3}[\s-]?\d{3}\z/
 !!(regex.match?(phone))
end
 phone_number = "+995 599 125 124"

phone_number = "+95 599 125 124"
if valid_phone?(phone_number)
 puts "Valid phone number"
else
 puts "Invalid phone number"
end

As a result we get:

Valid phone number
or

Invalid phone number

b) In the second case we will have:

def valid_phone?(phone)
 !!(/\A(\+?\d{1,2}[\s-]?)?(\(?\d{3}\)?[\s-]?)?\d{3}[\s-
]?\d{4}\z/.match?(phone))
end
puts valid_phone?("123-456-7890")
puts valid_phone?("abc123-456-7890xyz")
puts valid_phone?("+995-599-456-789")
puts valid_phone?("995599456789")
puts valid_phone?("(599) 456-789")

we will receive:

=> true
=> false
=> false
=> true
=> false

In this regular expression:

/\A(\+?\d{1,2}[\s-]?)?(\(?\d{3}\)?[\s-]?)?\d{3}[\s-]?\d{4}\z/

At the beginning and end of the line, as in the previous case,
anchors are used:

\A = Match start of string (anchor)
\z = Match end of string (anchor)

which ensures only the phone number is entered, nothing
before or after.

Then comes the fragment (\+?\d{1,2}[\s-]?)?, where the
country code is and the fragment (\(?\d{3}\)?[\s-]?)? where
the city code is.

In the next section, the phone number \d{3}[\s-]?\d{3}
will be placed as follows:

\d{3} ⇒ 3 digits (prefix)
[\s-]? ⇒ Optional space or hyphen
\d{3} ⇒ 3 digits (line number)

VI. CONCLUSION
In the ever-evolving cybersecurity landscape, Ruby is

emerging as a powerful tool for securing applications and data

[10]. Its flexibility, strong community support, and extensive
library ecosystem make it an effective language for addressing
a wide range of security challenges. By following best
practices—such as input validation, secure authentication,
encryption, and safe coding—developers can harness Ruby’s
capabilities to build robust and secure software solutions.

As cyber threats become more sophisticated, leveraging
Ruby’s strengths helps developers stay ahead in the ongoing
effort to protect digital systems. Ruby is a feature-rich and
versatile programming language with strong support for
metaprogramming, cross-platform development, and library
integration. Its elegant syntax and readability promote clean,
concise code—an essential factor in building and maintaining
secure systems. The language’s dynamic nature also
facilitates rapid development and quick iteration, which is
particularly valuable in cybersecurity, where timely responses
to new vulnerabilities are critical.

In a world increasingly dependent on digital technologies,
the importance of cybersecurity continues to grow. Threats are
becoming more frequent and complex, making it vital to
employ a broad range of tools and practices to safeguard data,
privacy, and digital infrastructure. Ruby's adaptability enables
teams to respond swiftly to emerging threats by allowing rapid
modifications and updates to codebases.

Validation and sanitization, as demonstrated in this article,
play a foundational role in creating secure Ruby applications.
Validation ensures that user input adheres to expected
formats—such as proper email addresses or phone numbers—
thereby preventing malformed or malicious data from entering
the system. Sanitization complements this by cleaning input
to remove or neutralize harmful characters, protecting against
common attacks like cross-site scripting (XSS) and SQL
injection.

Together, these practices significantly enhance application
security. They help maintain data integrity, reduce
vulnerabilities, improve user experience, and ensure overall
application stability. When combined with Ruby’s strengths
as a development language, these techniques empower
developers to build fast, secure, and reliable systems that can
adapt to the ever-changing cybersecurity landscape.

REFERENCES
[1] J. Evans, Polished Ruby Programming, Packt Publishing, 2021.
[2] N. Rappin and D. Thomas, Programming Ruby 3.3, Pragmatic

Bookshelf, 2024.
[3] https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-

2021/
[4] https://cybersecurityventures.com/official-cybercrime-report-2025/
[5] https://www.statista.com/forecasts/1399040/us-cybercrime-cost-

annual
[6] N. Metzler, Ruby programming, Independently published, 2020.
[7] M. Kofler, & 10 more, Hacking and Security: The Comprehensive

Guide to Ethical Hacking, Penetration Testing, and Cybersecurity,
Rheinwerk Computing, 2023.

[8] G. Weidman, Penetration Testing: A Hands-On Introduction to
Hacking, San Francisco, 2014.

[9] E. John, Intro to ruby programming, Publisher:Codemy.com, 2016.
[10] S. Metz, Practical Object-Oriented Design: An Agile Primer Using

Ruby, Addison-Wesley Professional, 2018.
[11] https://github.com/Raunaksplanet/My-CyberSecurity-

Store/blob/main/Books/Ruby%20by%20Example.pdf;
[12] E. Asabashvili, Comparative Analysis of Ruby Language Libraries in

the Field of Data Science, The University of Georgia, 2024.
https://doi.org/10.62343/csit.2024.1

132

https://www.amazon.com/Jeremy-Evans/e/B0034OW4QW/ref=dp_byline_cont_book_1
https://www.amazon.com/Nathan-Metzler/e/B08DKJ3LBL?ref=sr_ntt_srch_lnk_1&qid=1750415350&sr=8-1
https://online.ug.edu.ge/sillabus_system/syllabus_print.php?syllabusID=7034
https://online.ug.edu.ge/sillabus_system/syllabus_print.php?syllabusID=7034
https://doi.org/10.62343/csit.2024.1

	I. Introduction
	II. Threat Modeling in Application Development
	III. User Input Validation and Sanitization
	IV. Complex Input Scenarios and Real-World Attack Vectors
	V. Ruby Code
	Then comes the fragment (\+?\d{1,2}[\s-]?)?, where the country code is and the fragment (\(?\d{3}\)?[\s-]?)? where the city code is.

	VI. Conclusion
	References

