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Abstract—This paper presents a hybrid approach that 
integrates pre-defined convolutional layers based on Partial 
Differential Equations (PDEs) with the Variational Information 
Bottleneck (VIB) framework to improve image classification 
performance. While PDE-based layers enhance low-level 
structural features in the input, they may also introduce 
redundant information. To address this, we introduce a VIB 
module after the PDE layers, which learns compressed latent 
representations that retain only task-relevant information. The 
proposed architecture is evaluated on the CIFAR-10 dataset 
using various CNN backbones, including ResNet and VGG. 
Experimental results show that our method improves 
classification accuracy while reducing representational 
complexity. This demonstrates that combining physics-inspired 
priors with information-theoretic compression offers an effective 
strategy for enhancing deep neural networks. 

Keywords—Information bottleneck, partial differential 
equations, deep learning, image classification, representation 
compression. 

I. INTRODUCTION 

Convolutional Neural Networks (CNNs) have achieved 
remarkable success in image classification by learning 
hierarchical representations from raw data. While deep 
architectures such as ResNet [1] and VGG [2] effectively 
capture complex patterns, their early layers often rely on data-
driven training to extract low-level visual features such as 
edges and textures. Recent studies [3] have shown that 
incorporating domain knowledge, particularly in the form of 
Partial Differential Equation (PDE)-based filters, can enhance 
early representations by embedding structural priors into the 
network. PDE-based convolutional layers offer a physics-
inspired alternative to learned filters, improving 
generalization without increasing model complexity. 
However, these pre-defined transformations may also 
preserve redundant or task-irrelevant information, potentially 
propagating noise deeper into the network. This motivates the 
need for a principled mechanism to control the flow of 
information extracted by such filters. To address this, we 
propose a hybrid architecture that combines PDE-based 
convolutional preprocessing with the Variational Information 
Bottleneck (VIB) framework [4]. The VIB module, positioned 
after the PDE layers, learns a stochastic latent representation 

that compresses irrelevant details while preserving task-
relevant information. By integrating physics-based priors with 
information-theoretic compression, the proposed method aims 
to improve classification performance and representation 
efficiency. 

II. THEORETICAL FOUNDATIONS

2.1 PDE-Based Convolutional Layers 
The early-stage representation is computed using fixed 

filters derived from discretized Partial Differential Equations 
(PDEs). For example, the 2D heat equation (parabolic PDE) 
is expressed as:  

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑡2
+

𝜕2𝑢

𝜕𝑦2

This is discretized via finite differences [5] into: 

𝑢𝑖,𝑗
𝑡+1 = 𝑢𝑖,𝑗

𝑡   +  𝜑 × 𝑃(𝑢𝑡)

where 𝑃 is a convolution operator resembling the Laplacian 

kernel and 𝜑 is a fixed scaling parameter. 
Similarly, the hyperbolic variant is derived from the 2D 

wave equation and includes second-order temporal 
differences. 

2.2 VIB 

The core idea of VIB is to learn a representation 𝑇 of the 

input 𝑋 that keeps only the information needed to predict the 

output 𝑌 and forgets everything else. 
In its classical formulation, the Information Bottleneck [6] 

principle seeks to optimize the trade-off between compression 
and predictive relevance by minimizing the following 
functional 

𝐼(𝑋; 𝑇) − 𝛽𝐼(𝑇; 𝑌) 
where 𝑋 is the input variable that we want to compress (e.g., 

image), 𝑇 is the compressed representation of 𝑋, 𝑌 is the label 

(e.g., class),  𝐼 is the mutual information between two 
variables [7] 

𝐼(𝑋; 𝑇)  =  𝐻(𝑇)  −  𝐻(𝑇   𝑋⁄ ) 

and 𝛽 is a trade-off parameter. 

We want 𝑇 to be: 

• Compact (low 𝐼(𝑋; 𝑇) ): throw away noise and
irrelevant information.
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• Useful (high 𝐼(𝑇; 𝑌)): retain what helps predict 𝑌.
The (VIB) reformulates the above with a neural encoder 

and decoder, inspired by variational autoencoders [8]. 
Encoder converts the given representation into a 

distribution 𝑞(𝑡   𝑥⁄ ) (typically modeled as a Gaussian) [4]: 

𝑞(𝑡   𝑥⁄ )  =  𝑁(𝑡   𝜇(𝑥),  𝜎2(𝑥)⁄ )

This allows 𝑇 to be stochastic, which introduces noise and 
forces compression. The idea is to discourage the model from 
memorizing everything and instead train it to extract a 
probabilistic summary of the input that preserves only task-
relevant information. 

Decoder predicts label 𝑦 from sampled latent 𝑡, and 
typically a small neural classifier. 

The training objective of our model, as described in [4], 
will be: 

ℒ𝑉𝐼𝐵 = Ε𝑝(𝑥,𝑦) [Ε𝑞(𝑡   𝑥⁄ )[− log 𝑝 (𝑦   𝑡⁄ )]] +

𝛽 ⋅ 𝐷𝐾𝐿(𝑞(𝑡   𝑥⁄ ) ∥  𝑝(𝑡))
where the first term is the classification loss (cross-entropy 
under stochastic encoding), the second term is the 

compression loss: penalizes how much 𝑞(𝑡   𝑥⁄ )  diverges 

from a simple prior 𝑝(𝑡), and  𝛽 is the coefficient showing 
how much you value compression. The KL divergence  

𝐷𝐾𝐿(𝑃  ∥  𝑄)  =  ∑𝑃(𝑥) log
𝑃(𝑥)

𝑄(𝑥)
𝑥∈𝑋

term [7] encourages the encoder 𝑞(𝑡   𝑥⁄ ) to be as uncertain as 
possible about irrelevant info, but precise about what helps 

predict 𝑌. 
General comparison between VIB and Classical CNN is 

illustrated in Table 1. 

Aspect Classical CNN VIB 

Representation Deterministic Stochastic 

Regularization Dropout / 
BatchNorm 

Information-
theoretic (KL) 

Goal Minimize CE 
loss 

Balance CE + 
compression 

Interpretability Low High (info plane 
analysis) 

Table 1. VIB vs Classical CNN 

The summary of VIB intuition is to learn a compressed, 
uncertain, task-relevant representation of your input by letting 
the model choose what to keep and what to forget. 

III. EXPERIMENTAL SETUP AND OBSERVATIONS

To evaluate the proposed approach, we conducted 
experiments on the CIFAR-10 dataset, which consists of 
60,000 color images across 10 classes. The focus of the 
experiments was to assess how integrating a Variational 
Information Bottleneck (VIB) module after fixed PDE-based 
convolutional layers affects the performance of standard CNN 
architectures.  

The experiments also explored how different values of the 

VIB regularization parameter 𝛽 β affect the trade-off between 
compression and accuracy. In all cases, models were trained 

from scratch using identical optimization settings to ensure a 
fair comparison. 

3.1 Architecture Design 

Fig. 1. Overall architecture of the proposed PDE-VIB-CNN 
model 

The network is composed of three main stages, as 
illustrated in Figure 1: 

1. PDE-based Convolutional Layer Stack:  The first
part of the network consists of three learnable
convolutional layers derived from the discretization
of parabolic partial differential equations. These
PDE-inspired layers encode structural priors such as
local smoothness and edge continuity, while
retaining the flexibility of trainable weights. Each of
them is followed by a ReLU activation and batch
normalization.

2. VIB Module: The output of the PDE layers is passed
to a fully connected encoder network that produces a

mean vector 𝜇(𝑥)  ∈ ℝ𝑑  and a log-variance vector

𝑙𝑜𝑔𝜎2(𝑥)  ∈  ℝ𝑑 . These define a conditional

Gaussian distribution over a latent variable 𝑧, from
which samples are drawn using the
reparameterization trick. This stochastic bottleneck
enforces an information constraint, allowing the
model to retain only the most task-relevant features
from the PDE-enhanced representation.

3. The sampled latent variable 𝑡  is then passed to a
standard CNN backbone such as ResNet18 or
VGG11, which performs the final classification. The
entire network is trained end-to-end using a
composite loss function that includes both cross-
entropy for label prediction and a KL divergence
term that penalizes deviations from a unit Gaussian

prior on 𝑡 ..

This modular structure: PDE layers for low-level priors, 
VIB for information compression, and CNN for classification, 
offers a balanced trade-off between structured feature 
engineering and learned abstraction. 
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All models were implemented in PyTorch (an open-source 
deep learning framework) [9] and trained using stochastic 
gradient descent with momentum.  

Data augmentation techniques such as random horizontal 
flipping and cropping were used to improve generalization.  

The VIB regularization coefficient 𝛽 was tuned 
empirically to balance compression and classification 
accuracy. Batch normalization and dropout were employed to 
stabilize training and reduce overfitting, especially in the 
deeper layers of the CNN. 

3.3 Information Flow and Optimization 
Once the input is encoded by the PDE-based layers and passed 
through normalization and activation functions, the VIB 
module receives this enriched representation and performs 
probabilistic compression. Rather than repeating the 
deterministic flow seen in typical CNNs, here the encoder 

outputs two functions of the input — a mean vector 𝜇(𝑥) and 

a log-variance vector log  𝜎2(𝑥) ,⁡ which define a

conditional Gaussian distribution over the latent variable 𝑡. 
Sampling from this distribution is done via the 
reparameterization trick: 

𝑡  =  𝜇(𝑥)  +  𝜎(𝑥)  ⊙  𝜀 

where   ⊙  means element-wise multiplication and 𝜀 is a 
random noise vector sampled from the standard multivariate 

normal distribution 𝑁(0,  𝐼)  with zero mean and identity 
covariance. 

During backpropagation, the KL divergence term in the 

loss ℒ𝑉𝐼𝐵  penalizes deviation from a simple prior. This not 
only encourages compression but also stabilizes training by 
preventing overfitting. As a result, the model learns to 
emphasize task-relevant patterns while suppressing noisy or 
redundant information that might be passed from the PDE 
layers. 

3.4 Qualitative Observations 
In our experiments, the inclusion of the VIB module led to 
consistently more compact latent representations, as measured 
by lower KL divergence values and improved calibration of 
class probabilities. Models with PDE preprocessing alone 
showed moderate gains over standard CNNs, while the 
addition of VIB further enhanced the network's ability to focus 
on discriminative information. Training was also observed to 
be more stable in the presence of the VIB layer, likely due to 
its regularizing effect on feature flow.  

Overall, the combination of physically motivated 
preprocessing and information-theoretic compression yielded 
improvements in representation quality, robustness to noise, 
and generalization behavior. These benefits were observed 
consistently across both ResNet and VGG backbones. 

IV. CONCLUSION

In this work, we proposed a hybrid neural architecture that 
integrates trainable PDE-based convolutional layers with the 
VIB framework. By combining the inductive bias of physics-
inspired filtering with information-theoretic regularization, 
our approach encourages the extraction of compact and task-
relevant representations. The VIB module acts as a stochastic 
bottleneck, effectively limiting information flow to the 
classifier and improving robustness to irrelevant features.  

Preliminary results demonstrate that the proposed method 
is feasible and structurally compatible with existing CNN 
backbones. Moreover, its components remain fully 

differentiable and end-to-end trainable, making the 
architecture suitable for deployment in low-data or noisy 
environments. Future work will involve comprehensive 
experimentation, ablation studies, and an exploration of 
alternative PDE formulations. 
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