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Abstract—SAFER+ is a modern block cipher that was
submitted as a candidate for the Advanced Encryption Standard
(AES). It has various applications and is considered to be one of
the most secure block ciphers. All well-known attacks, including
linear and differential cryptanalysis, have been applied to
SAFER+ without revealing any vulnerabilities. In this paper,
we review linear cryptanalysis attacks against SAFER+ and
present additional data that may be of interest for the further
development of linear cryptanalysis.
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I. INTRODUCTION

Linear cryptanalysis, which is one of the main cryptanalysis
methods against block ciphers, was introduced by Gilbert,
Chasee, and Tardy in 1991 [1], [2]. In 1994, Matsui applied it
to DES and showed that it can mitigate exhaustive key search
and break it using only 245 known plaintext-ciphertext pairs.
This result made linear cryptanalysis one of the most famous
cryptanalysis methods against block ciphers.

Matsui adapted linear cryptanalysis to DES and similar
block ciphers [3] as a theoretical method for analyzing block
ciphers and determining key bits. The main idea is to find
approximate linear relations between plaintext, ciphertext, and
key bits to gain information about the partial keys. It is done
by considering the equation:

α ·X = β · E(X),

where X is the input and α and β denote the input and
output masks for the encryption function, respectively. The
(·) operation here is the dot product of the vector space
Fn
2 . If the probability that this equation holds for randomly

given x is different from 1
2 , then a sufficient number of

plaintext-ciphertext pairs can be used to reveal one bit of
information about the key bits involved in the equation. The
approximation is then extended to the entire cipher. Matsui
suggested two approaches, which he called Algorithm 1 and
Algorithm 2. Algorithm 2 was then used to break 8-round and
16-round DES ciphers with 221 and 245 plaintext-ciphertext
pairs, respectively.

Another approach for linear cryptanalysis is to generalize
it with the sum of balanced functions. This principle is

introduced by Harpes, Kramer, and Massey in [4], and the
motivation behind it is to enhance Matsui’s principle for
iterated ciphers. For this purpose Harpes et al. gives the idea
of I/O sums for the i-th round of the cipher:

S(i) = fi(Y
i−1)⊕ gi(Y

i),

where fi(Y
i−1) is a balanced Boolean function with Y i−1

(output of (i − 1)-th round) as input and gi(Y
i) a balanced

Boolean function accordingly. These two functions are called
the input and output functions of the I/O sum of the i-th round,
respectively. For more rounds of the cipher, there is the idea
of a multi-round I/O sum, which is nothing more than the sum
of consecutive I/O sums:

S(1,...,ρ) =

ρ⊕
i=1

S(i) = f1(Y
(0))⊕ gρ(Y

(ρ)).

If the key-mixing part in the encryption round is done by
a group or quasigroup operation or mod-2 addition, then
it is necessary to introduce the idea of homomorphic I/O
sums, where the sum of the input and output functions is a
homomorphism from the group with the key mixing operation
to the cyclic group of order two. Here, similar to Matsui, the
effectiveness of an I/O sum for the concerns of cryptanalysis
is measured by estimating the probability bias of the function
with an extra factor of 2, which is called the imbalance
property of the sum, i.e. 0 ≤ I(S(i)) ≤ 1. Harpes et al.
also gave the basic attack algorithm for known (plaintext,
ciphertext) pairs attack based on the imbalance results of
the I/O sum. In [4] Harpes enhanced their idea by adding a
balanced function of the round key (K(i)) to the sum, which
the authors called a Threefold sum:

T (i) = fi(Y
i−1)⊕ gi(Y

i)⊕ hi(K
i).

II. PRELIMINARIES

In this paper, we provide an overview of the application
of linear cryptanalysis on SAFER+. In [9] Harpes presented
a linear cryptanalysis of SAFER-K64, which has the same
structure as SAFER+. Actually, [9] is a direct application of
[4] on SAFER-K64. He showed that SAFER-K64 is secure
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against linear cryptanalysis after one and a half rounds. Below,
we provide a short description of SAFER+.

A. Description of SAFER+

The SAFER+ block cipher was developed by Prof. J.
Massey with Dr. M. Kyureghyan and Prof. G. Khachatryan
in 1998 [5], and was nominated for Advanced Encryption
Standard as a candidate. The block size of SAFER+ is 128
bits, which provided for plaintext and ciphertext, also user-
selected keys could be in 128, 192, and 256 bit sizes. The
encryption routine for SAFER+ consists of 8(12, 16) rounds
for the user-choosen 128(192, 256) bit key length. The one
round of encryption is illustrated in figure 1, and the following
cases will describe the SAFER+ encryption round routine:

1) The round input (Yi0 ) is represented by a 16-byte array:
2) The first key addition by K2i−1 is done by mod-2 and

mod-256:

Yi1 := {xj ◦ kj2i−1, where ◦ :=

⊕ | j ∈ {1, 4, 5, 8, 9, 12, 13} and
+256 | j ∈ {2, 3, 6, 7, 10, 11, 14, 15}}.

3) The non-linear layer process:

Yi2 := {NL(yj), whereNL :=

45yj | j ∈ {1, 4, 5, 8, 9, 12, 13} and
log45(yj) | j ∈ {2, 3, 6, 7, 10, 11, 14, 15}}.

Here, the NL functions are processed by modulo 257.
In addition, the 256 value in the exponent function
is represented by 0, and the value for 0 input in the
logarithm function by 128.

4) The second key addition by K2i key, where the indexes
changed for mod-2 and mod-256 addition regarding the
first key addition.

5) And the last part of the encryption round comes with
linear transformation by an inverse matrix with entries
from Z256 and 128 × 128 size, this is also done by 4
layers of 2-PHT and Armenian Shuffle permutations.

III. REVIEW OF EXISTING RESULTS

K. Kyuregyan and M. Kyureghyan in [6] showed that similar
to the original SAFER+, a modified version of SAFER+ is
secure against the generalized linear cryptanalysis method in-
troduced by Harpes et al. after only two rounds. The approach
is to find effective homomorphic I/O sums for each of the half-
rounds and combine them to yield an effective homomorphic
I/O sum for the entire cipher.

A procedure for finding effective homomorphic I/O sums
of multiple layers is described, and it is proved that this
procedure does not yield effective homomorphic I/O sums for
a cascade of half-rounds containing at least two PHT layers. K.
Kyuregyan carried out the calculations for linear cryptanalysis
of SAFER-256 in [7]. SAFER-256 has also been shown to be
secure against linear cryptanalysis after three rounds.

The next effective approach was proposed by J. Nakahara,
B. Preneel and J. Vandewalle [8]. They showed that the usage

2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT

2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT 2-PHT

exp exp exp exp exp exp exp explog log log log log log log log

add add add add add add add addxor xor xor xor xor xor xor xor

xor xor xor xor xor xor xor xoradd add add add add add add add

Armenian Shuffle

Armenian Shuffle

Armenian Shuffle

Armenian Shuffle

Round Output (16 bytes)

Round Input (16 bytes)
K

2
i−

1
K

2
i

Fig. 1. i-th round of SAFER+

of non-homomorphic functions will yield stronger dependency
of key bits and improved linear relations. The idea of using
non-homomorphic functions in SAFER+ comes with splitting
a round approximation into four parts of quarter rounds:
the key mixing layers, the non-linear layer, and the linear
matrix multiplication layer (PHT). With this enhancement of
the principle of Harpes et al., they were able to achieve a
linear approximation of 2.75 rounds of SAFER+. In their
calculations of the linear approximation, for the generation
of linear relations for the PHT layer, they used linear hulls.

The notion of a linear hull was introduced by K. Nyberg
in [10], defined as the set of all linear trails that share the
same input and output masks. In classical linear cryptanalysis
(e.g., Matsui’s method), one typically focuses on a single
best trail and applies the piling-up lemma to combine round
correlations, but Nyberg observed that many ciphers admit
multiple distinct trails for a given input-output mask. The
hull framework, therefore, aggregates all such trails: The net
correlation of the approximation is computed by summing the
contributions of each trail in the hull. This method often yields
a larger effective bias than any individual trail alone.

Nakahara et al. explicitly applied Nyberg’s linear hull
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technique to the PHT layer of SAFER+. For each fixed input-
output mask on a two-byte PHT addition, they collected
all single-path linear approximations that share that mask,
treating this collection as a single linear hull (as defined by
Nyberg). In practice, they restricted attention to the two least
significant bits of each 2-byte PHT addition, since these bits
yield the strongest biases. Summing the bias contributions of
all trails in one hull often showed cancellation - some trails
have positive deviation and others equal-magnitude negative
deviation, which cancel out. This gives the aggregate (often
small or zero) bias of the PHT-layer hull. They then combined
each PHT-layer hull with the corresponding hulls from the
nonlinear S-box and subkey layers to form full one-round
linear approximations. In other words, instead of following
a single trail per round, the authors summed over all trails
(the hull) for that round before proceeding, thereby taking
advantage of Nyberg’s idea of aggregating biases.

In Table I, the current results of linear cryptanalysis for
block ciphers of the SAFER family have been provided.

TABLE I
THE SAFER+ LINEAR CRYPTANALYSIS RESULTS

Authors Cryptanalysis
Type Rounds Bias Cipher

M. Kyureghyan,
K. Kyureghyan

[6]

Homomorphic
I/O sum 2.5 ≈ 2−11

SAFER+
(modified
version)

J. Nakahara,
B. Preneel,

J. Vandewalle
[8]

Non-
Homomorphic

I/O sum
2.75 2−49 SAFER+

C. Harpes [9] Homomorphic
I/O sum 1.5 ≈ 2−6 SAFER-

K64

From Table I, it becomes clear that currently the best method
has been provided by Nakahara et al. in [8].

IV. CALCULATION OF LAT TABLE FOR SAFER+ NON
LINEAR FUNCTIONS

One of the primary properties in Linear Cryptanalysis is
the Linear Approximation Table (LAT), whose entries are
the biases for the S-box (non-linear function) of the cipher.
The exponential and logarithmic functions’ LAT should be
calculated for analyzing the resistance of SAFER+ to the
Linear Cryptanalysis. The bias refers to how much the output
distribution of the S-box deviates from a uniform distribution:

P[α ·X ⊕ β · S(X) = 0]− 1

2
.

Each entry in LAT is calculated using input (α) and output
(β) masks from Fn

2 for an S-box and iterating over the domain
elements of the function. We have computed LAT values for
the exponential/logarithmic function. The highest absolute bias
values are given in Table II.

Since the logarithm function is the inverse of the exponen-
tial, its LAT is the transpose of the LAT of the exponential
function.

TABLE II
A PART OF THE LINEAR APPROXIMATION TABLE

α/β 23 32 52 80 AB CC D1 F1 FE
11 0 2 -2 2 10 2 16 -8 44
1B 2 2 2 2 10 -2 8 2 -44
26 0 -22 2 0 42 16 -14 -6 2
2D 2 8 2 0 38 -10 -2 0 -2
3A 0 -46 2 2 12 38 0 0 0
42 -36 2 -12 2 -2 8 6 -2 6
65 -8 2 2 2 4 -2 36 0 0
B3 0 4 0 2 -6 0 6 -34 -4
EF -2 -4 0 34 -8 10 -6 -4 -6

V. CONCLUSION

Although linear cryptanalysis remains a powerful technique
against block ciphers, SAFER has proven to be resilient to
such attacks. The most effective known result, achieved by
Nakahara et al. in [5] successfully breaks only 2.75 out of 7
rounds.
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