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Abstract—In this paper, we consider the source model with
side information available at the encoder and decoder. The
Rate-reliability-distortion function is stated by constructing the
lower and upper bounds.
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I. INTRODUCTION

Source coding with side information is a foundational topic
in information theory with applications in data compression,
distributed systems, and secure communications.

Source coding with side information refers to scenarios,
where the encoder or decoder has access to additional cor-
related information, called side information, which can assist
in compressing the source more efficiently. The study of
this topic originated with Shannon [1] and was expanded
significantly by Slepian and Wolf [2], Wyner [3], Wyner and
Ziv [4], and many others.

The models of the source with side information have
applications in various fields, including:

o Sensor Networks: Efficient compression using correlation

between sensors,

e Multimedia: Video compression using past frames or

channel feedback as side information,

o Wireless Communications: Cooperative and relay net-

works,

o Privacy-Preserving Compression: Secure data transmis-

sion and storage,

e Machine Learning: Federated learning and distributed

inference.

The central concept in lossy source coding is the rate-
distortion function, which characterizes the trade-off between
the rate at which information is transmitted (measured in bits
per symbol) and the distortion (or loss of fidelity) that occurs
during the lossy compression of a source. It is interpreted as
follows: for higher distortion, the rate is less, hence one can
compress more, losing more accuracy; for lower distortion,
the rate is higher, hence one needs more bits to preserve the
quality.

The next characteristic of the source is the rate-reliability-
distortion function, the coding rate as a function of given
distortion level and error exponent or reliability E. This
function has been studied for various source models [5].
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Here, we study the rate-reliability-distortion function for the
source model with side information available at the encoder
and decoder.

II. NOTATIONS AND DEFINITIONS

We consider the system shown in Fig.1. The Discrete Mem-
oryless Source (DMS) with state s is defined as a sequence
{(X3,8:)}52, of jointly distributed with distribution P*(x, s)
random variables X and S taking values in finite sets X
and S. The finite set X' , different in general from X, is the
reproduction alphabet at the receiver.
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Fig. 1. The model of DMS with side information available at the
encoder and decoder

We are given a distortion measure
d: X x X —[0;00)

between source and reconstruction messages. The distortion
measure for N-length sequences is the average of the compo-
nents’ distortions

1 N
d(x,%) = + > d(x, ).

The task of this system is to ensure the restoration of the
source messages at the receiver within a given distortion level
A and with a small error probability in the case when the state
sequence is available to both the encoder and the decoder. A
code (fn,gn) for this case is defined by a pair of mappings:
a coding

fn: XN x SN 5 {1,2,...,L(N)},
and decoding

gy :{1,2, .., L(N)} x 8N = X,
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where L(N) is the code volume. The code rate is

R(fn,gn) = %log L(N).

Throughout this paper, all log-s and exp-s are of base 2.

We consider the memoryless source, which means that for
N-length vector pairs X = (z1,Z2,...,2y5) € AN and s =
(s1,82,...,5n) € SN

PN (x,s) =

We will use the following distributions:
P2 {P(x,s) = Py(s)Py(z]s),2 € X,s € S}
and the conditional distribution @
Q 2 {Q(&|z,s),z € X, & €S,s €S}

For the formulation of the result, we remind the following
definitions [6].
The entropy of RV S is

Hp,(S Z Py(s

The conditional entropy of RV X relative to the random
variable S is

) log Py(s).

(X\S ZP z, s) log Py (z|s).

S,

The conditional mutual information of RV X and X relative
to the random variable S is

Ipo(X;X|S) 2
Q(&[z, s)
P(z,8)Q(&|z, s)log ————
s PQlels)
where
= Z Py (z]8)Q(Z|x, s).

reX

The following property will be used below:
Ipq(X;X|S) = Hp(X|S) — Hpo(X|X,S).

The Kullback-Leibler divergence between the distributions
P and P* is defined as follows:

Pz, 5)
Z Pms)logp*( St

reX,s€ES

D(P||P*) £

The set of satisfactorily transmitted vectors for the given s,
which are reconstructed within the distortion constraint A > 0
is as follows:

A(S) = {X : gN(fN(X’ S)a
The error probability of the code (fn,gn) is defined as:

seSN

s) =%, d(x,%) < A}

R > 0 is called (E, A)-achievable rate for given P*, E >
0 and A > 0, if for every € > 0,9 > 0, there exists a code
(f~,gn) such that

1
NlogL(N) <R+e

and the error probability is exponentially small
e(fn,gn, P*,A) < exp{—N(E —§)}.

The minimum (F, A)-achievable rate for given PD P* is
called the rate-reliability-distortion function and denoted by
R(E, A, P*).

III. MAIN RESULT

Consider the following set of joint distributions P on X xS
a(E,P*)={P: D(P||P") < E}.

Let Q(P, A) be the set of all conditional PDs Qp(&|x, s) =
Qp, corresponding to the PD P, for which the following
conditions hold:

Ed(X, X) Z P(x,s)Qp(&|z, s)d(x,z) < A. ()

ISI

The main result is the following theorem.
Theorem 1: For given P*, every ' > 0 and A > 0,

R(E,A, P*) = Ip o, (X;X|S).

max min
Pea(E,P*) QpeQ(P,A)
For the proof of Theorem 1, we will use the following
modification of the Covering Lemma [5], which is based on
the method of types (for definitions and properties, we referee
to [7]).
Lemma 1: (Covering Lemma) Let for € > 0

J(P,Q) = exp{N(Ipq(X; X|S) +¢)}.

Then, for every type P,, state sequence s € Tlig (S), condi-
tional types P; and @, there exists a collection of vectors

{)A(j € Tlg'YQ(X|S)7J = ]-7 a3 J(PaQ)}v
such that the set
{Tli\,]Q(X‘)A(J’S)m? = 177J(P7Q)}5

covers T2 (X|s) for N large enough, that is

J(P.Q)
U TP (XI%.s).

j=1

T (X|s) C

We omit the proof of Lemma 1, since it is obvious.
Proof of Theorem 1. The proof of the theorem consists of

two parts.
First, we will show that
R(E,A,P*) < max min  Ipo,(X;X[S). (2)

Pca(E,P*) QpeQ(P,A)

Let us represent the set of all source messages of length NV
as follows:

XN x SN = U
PePn(XXS)

TH (X, S)

156



T (X, 8),

- U U

P()GPN(S) P ePN (X,Po)

where Py (.5) is the set of possible types Py of vectors s €
SN, Pn (X x S) is the set of possible types P of pairs (x,s) €
XN x SN and Py (X, Py) is the set of all possible conditional
types P; for s of type Fp.

For each 6 > 0 and N large enough, the estimation of the
probability of occurrence of a source of types beyond «(F +
d, P*) can be estimated using the properties of the types and
the definition of the set «(E, P*):

P*N U

P&a(E+6,P*)

- ¥

Pga(E+6,P*)

T2 (X, 8)

P (T (X, 5))

min

N + D)IXIS] _N
(N+1) P Pga(E+6,P*)

D(P|P*)}

exp{—NE — NG+ |X||S|log(N + 1)}

IN

< exp{-N(E+6/2)}.

Consequently, it is sufficient to show the existence of a
code with required error probability e( fn, gn, P*, A) for the
vectors with type P from «(F + §, P*). For each A > 0, let
us pick some types Py, Py such that P € oa(F + §, P*) and
some Qp € Q(P,A). Let for each s € T4 (S5)

C(P,Qp,j) = TP, (X[%;.8) — | Tho, (XI%j1,5),

J'<j
j: 17J(P7QP)

We define a code (fn,gn) for each vector s with the
encoding:

J, when x € C(P,Qp,j), P € a(E+0,P"),
fn(xls) =
jo, when x € TV (X|s), P & a(E + 6, P*),

and the decoding

gn(jls) = %X, gn (jols) = %o,

where the number jo and the reconstruction vector X, are
fixed. Obviously, with such code, an error occurs only when
the number jg is sent.

According to the definition of the code and the inequality
(1), for P € a(E + 9, P*) and Qp € Q(P,A) we have:

Z P(xa S)QP(ﬂxv S)d((E,i’)

x,8,T

d(X, )A(J) =

= Epq.dX,X)<A, j=1J(P.Qp)

According to Lemma 1, the number of vectors X for each
s, type P and corresponding conditional type Qp € Q(P, A)
is:

Lpg,(N)=exp{N(Ipq(X;X|5)+¢€)}.

Then, taking into account that the number of types has a
polynomial estimate, for the transmitter rate L(N), we find
the following estimation:

LNy < )

Pea(E+6,P*)

Lpg,(N) < (N +1)l¥ls!

min
QpPeQ(P,A)

X max min

N(Ipo(X: X|S) + }
p@w%,p*)%eg(p,&)exp{ (Ipq(X; X|S) + )

Hence, the corresponding limit for the transmission rate is:
1 1
NlogL(N) —€— N|X||S|log(N+ 1) <

< max min  Ipo(X; X|9).

T Pca(E+6,P*) QpeQ(PA)

3)

Taking into account the arbitrariness of ¢ and ¢ and the
continuity of the information expression (3), we get (2).
Now, we pass to the inverse part, we shall prove that:

R(E,A,P*) > max min

I X;X|S).
T Pea(E,P*) QpeQ(P,A) P ( 15). @)

Let € > 0 be fixed. Consider a code (fn,gn) for each
blocklength N with (E, A)-achievable rate R. We must show
that for some Qp € Q(P,A) the following inequalities hold
for N large enough:

1 .
—log L(N) + ¢ > Ipo,(X: X|9).
v log L( )+6_Peg%%§,*) P.or(X; X]5)

(&)

Let for each state sequence s, A’(s) be the complement of
the set .A(s). The following statement is true:

A T (XIs)| = | T2 (XIs)| = [4'(5) T2 (X]s)]
For P € a(F — ¢, P*)

i 7 (xle| = LGN T (Xl)
< exp{N(Hp(X|S)+ D(P||P*))} exp {-N(E —€)}
< exp{N(Hp(X|S) —€)}.
Hence,

A4 (77 (x]s)]
> (N +1)"1¥Slexp {NHp(X|S)}
—exp{N(Hp(X|S) —€)}

exp{Ne}

=exp{N(Hp(X|S) —€)} ((N.H)IXISI B

1) (6)

For each x € A(s) (T2 (X|s) corresponds a unique vector
X such that

> exp {N(Hp(X|S) - o)}

% = gn(fn(x,8),8) and % € TAo(X|x,s).
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Let us divide the set of all vectors |.A(s) T2 (X|s)] into
subsets by conditional types @) p. The class having maximum
cardinality for given P, we denote by

(a7 xs)f),,

According to the number of conditional types @, for suffi-
ciently large N, we have:

A(s) (75" (Xs)
|

<) ([a N T (Rs)])

<en{Ne/2) (A0 TH (X)), - O

Let
D(s) ={x: gn(fn(x,8),8) =%,

for somex € A(s) (T2 (X1s) () TR, (X, s)} :
From the definition of the code |D(s)| < L(N), then
N
(AeN 7))

< > | THo(XIk.s)| ®)

xe€D(s)
< L(N)exp{NHpg,(X|X,S)}.
From (6-8) follows
L(N) > exp{N(Ipq,(X; X|S) - €)},

for each P € «a(FE — ¢,Px) and some Qp for which
Epg,d(X,X). Theorem 1 is proved.

IV. CONCLUSION

In this paper, the source model with side information
available at the encoder and decoder is studied. The analytical
form of the Rate-reliability-distortion function is obtained by
constructing the lower and the upper bounds.
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