
Development and Deployment of TLS Communication

Protocol in IoT Devices Using MQTT and CoAP

Protocols

Mariam Gevorgyan
National Polytechnic University of Armenia

Yerevan, Armenia

e-mail: mariamgevorgyan.tt055-1@polytechnic.am

Abstract— In the rapidly evolving field of Internet of Things

(IoT) technologies, secure data exchange has become a

significant challenge for devices with limited resources. This

paper examines the implementation of the Transport Layer

Security (TLS) protocol for IoT devices utilizing the MQTT and

CoAP communication standards. It presents a system designed

to ensure data confidentiality, integrity, and authentication

through the use of Datagram TLS (DTLS) 1.2, a specific

handshake model, and Pre-Shared Key (PSK) authentication.

The approach leverages the nRF9160 DK and Thingy devices,

which are powered by Arm Cortex-M33 processors and

equipped with integrated CryptoCell310 security subsystems.

MQTT facilitates a publish/subscribe message exchange model

through Mutual TLS, while CoAP enables RESTful requests

secured by DTLS. Sensor data are encrypted and transmitted

over Bluetooth Low Energy (BLE), with handshake validation

conducted through traffic analysis using Wireshark and PSK

decryption. This research highlights that lightweight TLS

modules, configured with CoAP and MQTT protocols and

incorporating ARM’s TrustZone technology, can afford secure

and efficient communication in constrained environments

without sacrificing performance.

Keywords—TLS, DTLS, MQTT, CoAP, nRF9160 DK,

CryptoCell, Trustzone, CBOR, PSK, Wireshark.

I. INTRODUCTION

 With the widespread proliferation of Internet of Things

(IoT) devices, secure communication and data protection have

become primary concerns. This article explores the

development of an adaptive and lightweight security

methodology for implementing Transport Layer Security

(TLS). We have chosen the Constrained Application Protocol

(CoAP) and Message Queuing Telemetry Transport (MQTT)

as foundational communication layers because of their

suitability for low-power devices. Key components such as

ARM TrustZone, the CryptoCell security subsystem, JSON

Web Token (JWT) authentication, and Pre-Shared Key (PSK)

handshake models have been integrated to ensure both

flexibility and system efficiency.

II. ARM ARCHITECTURE AND CRYPTOCELL SECURITY

SUBSYSTEM WITH ARM TRUSTZONE

 ARM (Advanced RISC Machine) [1] architecture is a

family of computer processor architectures based on the RISC

(Reduced Instruction Set Computing) model, developed by

ARM Holdings. ARM processors are widely used in a variety

of electronic devices, including smartphones, tablets,

wearable devices, embedded systems, IoT devices, and

servers.

 ARM architecture integrates security technologies

through a Trusted Execution Environment (TEE), enabling

sensitive code execution in isolated and secure zones free

from interference by other system components. The most

commonly used TEE implementation is TrustZone,

introduced by ARM in the ARMv8-M profile. TrustZone

splits system resources into secure and non-secure domains,

establishing a security boundary within a single device. This

segmentation supports secure boot, trusted firmware updates,

and root-of-trust installations—ensuring secure IoT

applications without compromising performance.

 Through the TrustZone approach, ARM supports the

CryptoCell security subsystem, which serves as a hardware-

based root of trust and facilitates cryptographic operations

within the device. It is physically isolated and accessed via

dedicated software APIs.

 CryptoCell [2] resides in the secure domain defined by

TEE in the ARM architecture. Developers can interact with it

using specialized APIs for encryption tasks. By offering rich

cryptographic and security resources, CryptoCell strengthens

IoT application resilience against cyber threats and is

specifically optimized for energy-constrained devices.

 In IoT devices, the inclusion of isolated security

subsystems such as CryptoCell provides:

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_48 194

• Efficient processor usage: Delegating encryption to

a dedicated subsystem reduces CPU load and

streamlines overall system performance.

• Reduced power consumption: The subsystem

remains mostly in standby mode and activates

efficiently when needed.

• Enhanced security: Isolation strengthens protection

against unauthorized software and physical

tampering.

• Improved performance: Tasks run faster within the

security subsystem due to its streamlined

architecture and dedicated functionality.

 CryptoCell also acts as a root of trust, supporting the

following functional domains:

• Control domain: Manages subsystem access and

information exchange.

• Data interface domain: Handles secure data storage

and transmission.

• Symmetric cryptography domain: Performs AES

or ChaCha20/Poly1305-based

encryption/decryption.

• Asymmetric cryptography domain: Enables ECC

or RSA encryption/decryption.

• Security resource domain: Delivers various

protective mechanisms, transforming the system

from a simple accelerator into a full-featured security

processor.

 The nRF9160 DK includes the CryptoCell 310 subsystem,

supporting the following cryptographic features: [3]

• True Random Number Generation (TRNG)

• Pseudo-Random Number Generation (PRNG) using

AES core

• RSA public-key cryptography

• ECC-based cryptography, including:

• NIST FIPS 186-4 curves (using pseudo-

random parameters)

• SEC 2 curves (using pseudo-random

parameters)

• Koblitz curves (using fixed parameters)

• Edwards/Montgomery curves

• ECDH/ECDSA support

• Secure Remote Password (SRP) protocol

• Hashing functions:

• SHA-1

• SHA-2 (up to 256-bit)

• HMAC (Keyed-hash Message

Authentication Code)

• Symmetric encryption:

• AES

• ChaCha20/Poly1305

III. SECURE COMMUNICATION PROTOCOLS

 TLS protocol: TLS (Transport Layer Security)[4] is a

transport layer protocol designed to secure communication

over computer networks. It ensures the confidentiality,

integrity, and authenticity of data exchanged between clients

and servers.

 To enable TLS on a website or application, an SSL/TLS

certificate must be installed on the server. This certificate is

issued by a Certificate Authority (CA) to the individual or

organization that owns the domain. The certificate contains

essential information about domain ownership as well as the

server’s public key, both of which are critical for verifying the

server’s identity.

 During the TLS handshake, a cryptographic suite is

established for each communication session. A cipher suite is

a set of algorithms that defines the keys and encryption

techniques to be used throughout the session.

 TLS 1.2 does not inherently support Zero Round-Trip

Time (0-RTT)[5], a feature introduced in TLS 1.3. This

feature, also known as “early data,” allows the client to start

sending application-layer data—such as HTTP requests—

without waiting for the handshake to complete, thereby

reducing connection latency.

 However, some implementations of TLS 1.2 may include

extensions that mimic 0-RTT behavior. These typically rely

on Pre-Shared Keys (PSKs) or session resumption

mechanisms to achieve similar efficiency. The system we

designed uses PSKs to implement the concept of 0-RTT

communication.

 Since IoT devices are resource-constrained, with limited

memory, storage, processing power, battery capacity, and

bandwidth, it is more effective to secure them using the CoAP

protocol, which incorporates TLS through its datagram

variant, DTLS.

 CoAP protocol: CoAP (Constrained Application

Protocol)[6] is a transport layer protocol based on UDP,

specifically designed for communication between constrained

devices. Its connectionless nature allows endpoints to

communicate without prior negotiation, making it especially

useful in systems that monitor status changes and exchange

state information between clients and servers.

 CoAP employs a request-response mechanism with a one-

to-one architecture, functioning without any intermediary

components. The protocol architecture of CoAP is illustrated

in Figure 1.

Figure 1. CoAP protocol architecture

 CoAP minimizes network traffic by transmitting compact

messages using CBOR (Concise Binary Object

Representation) formatting rather than JSON.

Each CoAP endpoint supports CBOR to optimize traffic by

reducing or compressing payload sizes. JSON is also

supported, but using CBOR with CoAP can decrease data

usage by up to 75%.

 CBOR is a compact serialization format designed to

represent structured data efficiently. It aims to achieve the

same goals as JSON but employs a more succinct binary

encoding.

 All CoAP communication with nRF Cloud occurs over

DTLS (Datagram Transport Layer Security) on port 5684 for

server authentication. The server presents its X.509

195

certificate, while the device does not. The device verifies the

server's certificate and then sends its JWT (JSON Web Token)

to establish its identity. Once authenticated, the device and

server can continue secure communication.

 MQTT protocol: MQTT[6] is a lightweight

publish/subscribe protocol for message exchange.

 The structure of the MQTT network is illustrated in Figure

2.

Figure 2. MQTT network structure

 nRF Cloud is hosted on AWS and uses the AWS IoT Core

MQTT broker to process messages sent and received through

MQTT topics.

 The MQTT publish/subscribe process works as follows:

• The device or modem-based MQTT client connects

to the nRF Cloud MQTT endpoint.

• It publishes a JSON message to a specified topic.

• The MQTT broker receives the message. If a rule is

defined and its criteria are met, the rule triggers an

action—such as storing the message in a database or

republishing a subset of its data to another topic.

 All communication with the AWS IoT MQTT broker must

use Mutual TLS on port 8883. This requires MQTT-enabled

devices to possess an X.509 certificate and be registered with

nRF Cloud.

 MQTT (Message Queuing Telemetry Transport) is a

widely used IoT protocol operating at the application layer

over TCP, primarily suited for backend cloud platforms. It

excels in event-driven systems with multiple nodes

interacting, often based on sensor readings.

 MQTT includes a keep-alive mechanism that maintains a

persistent connection between the client and the broker—but

this increases energy consumption. The client sets a keep-

alive interval during connection initialization, which defines

the maximum time they may remain connected without

sending a message. The broker may enforce a maximum keep-

alive duration (typically 60 seconds). If the client's interval

exceeds this, the broker may terminate the connection.

 MQTT transmits credentials in plain text and doesn’t

include built-in authentication or security mechanisms—but it

does support encryption via TLS. Enabling TLS secures

communication between the MQTT client and broker.

IV. RESULTS

 TLS implementation was performed on nRF9160 DK and

Thingy devices powered by the ARM Cortex-M33

architecture, both of which integrate the CryptoCell310

security subsystem. This subsystem supports symmetric and

asymmetric cryptographic operations, TRNG/PRNG

mechanisms, and ECC and AES algorithm acceleration.

 The TLS module is deployed using DTLS 1.2, suitable for

UDP-based protocols such as CoAP and MQTT. The 0-RTT

connection model enables bypassing traditional handshake

phases using pre-shared keys (PSKs), significantly reducing

connection latency.

 Traffic encryption and decryption were validated via

Wireshark, confirming successful DTLS handshake results,

the cipher suites listed in the Client Hello packet, and the

server’s response certificates.

 MQTT operated over Mutual TLS, establishing a secure

channel from the device to the broker and the designated

server at home.arevatech.am. CoAP utilized DTLS 1.2 with

Connection ID (CID), enabling persistent and secure

sessions—even when the device’s IP address changed.

 Environmental data from the Thingy device’s built-in

sensors was securely transferred to the host device via BLE,

then forwarded to cloud systems using MQTT/CoAP APIs.

 Within Wireshark, cipher suite negotiation and session

key validation were carried out during the DTLS handshake

using the supplied PSK.

 The nRF9160DK Thingy includes sensors capable of

collecting environmental parameters such as humidity,

temperature, brightness, and more.

 Temperature acquisition is shown in Figure 3.

Figure 3. Temperature acquisition

 To send data to home.arevatech.am, first assign a topic

name to the topic field, followed by a specific message

categorized under that topic. Once this is configured, clicking

the Publish button will transmit the message to the designated

host. home.arevatech.am acts as the server, functioning as an

MQTT Broker for the MQTT protocol. The figure below

illustrates that the message has been successfully delivered to

the specified host.

 Figure 4 shows the sent message.

Figure 4. Sent message

 The nRF9160 DK is configured to periodically check the

incoming data and output it to the terminal. By pressing the 1

button on the keypad, the GET request result is obtained,

which is shown in Figure 5.

Figure 5. GET request and response

 Using both buttons, we get the response to the PUT

request, as shown in Figure 6.

Figure 6. PUT request and response

196

 To decrypt traffic, it is first necessary to capture trace data.

The Cellular Monitor provides the capability to record a

modem trace and save it as a raw file.

 Using the ip keyword, we filter the traffic of a newly

connecting device. In these packets, IP traffic can be divided

into 3 parts:

• DNS lookup

• DTLS handshake

• Encrypted application data

 Figure 7 shows traffic from a newly connected device.

Figure 7. Traffic from a newly connected device

 Examining these three scenarios is particularly helpful

when the device fails to connect to the server. Often, the most

insightful packet is the Client Hello. This is the first packet

sent from the device to the server and contains numerous

details about the device’s supported capabilities.

 In our case, we can see that the device uses PSK as the

method for authentication and encryption, and intends to

initiate a connection with the server at home.arevatech.am.

 By clicking on the Client Hello packet, we can view the

list of supported cipher suites, which is shown in Figure 8.

Figure 8. Cipher suites

 In this protocol, we can see the response message sent by

the server, as shown in Figure 9.

Figure 9. Decrypted message

 Another way to decrypt DTLS is to use PSKs. The DTLS

handshake ends with an "Encrypted Handshake Message,"

after which only encrypted application data is transmitted.

However, by providing Wireshark with the PSK used in the

DTLS connection, we can decrypt the traffic, which is shown

in Figure 10.

Figure 10. Traffic decryption with PSK

 The DTLS handshake using the 0-RTT PSK method

reduced connection establishment time by more than 25%,

providing significant relief for low-power microcontrollers.

 It’s important to note that traffic decryption is only

possible when PSK-based cipher suites are used. In cases

where asymmetric key cipher suites are applied, a symmetric

session key is generated and exchanged via the Diffie-

Hellman key exchange protocol. Since the modem does not

expose the generated symmetric key, decrypting the traffic

becomes impossible.

V. CONCLUSION

 Examining these three scenarios is particularly helpful

when the device fails to connect to the server. Often, the most

insightful packet is the Client Hello. This is the first packet

sent from the device to the server and contains numerous

details about the device’s supported capabilities.

 In our case, we can see that the device uses PSK as the

method for authentication and encryption, and intends to

initiate a connection with the server at home.arevatech.am.

 The security challenges of IoT devices can be effectively

addressed through the implementation of TLS/DTLS

protocols—particularly using PSK and 0-RTT techniques.

Deploying CryptoCell310 within an ARM TrustZone

environment ensures a reliable platform for cryptographic

functionality, supporting ECC, AES, SHA, and RNG.

 Decryption tests conducted via Wireshark confirm that the

PSK model enables not only a lightweight handshake process

but also full traffic visibility and control.

 MQTT and CoAP protocols, featuring Mutual TLS and

DTLS support, enable efficient communication across various

application-layer environments. Data exchange from device to

cloud, secured through JWT authentication and CBOR

formatting, helps optimize data flow and reduce power

consumption.

REFFERENCES

[1] Preventing a $500 Attack Destroying Your IoT Devices, Axiado

Corporation & Global Semiconductor Alliance, November 2021.

[2] A. Malashanka, "Arm TrustZone and CryptoCell: The Easy Way to
Accelerate Cryptography," 1 October 2021. [Online]. Available:

https://klika-tech.com/blog/2021/10/11/arm-trustzone-and-cryptocell-

the-easy-way-to-accelerate-cryptography.

[3] J. Wallance, "Arm CryptoCell-312: Simplifying the design of secure

IoT systems," Arm Community Blogs, 1 November 2016. [Online].

Available: https://community.arm.com/arm-community-
blogs/b/embedded-and-microcontrollers-blog/posts/arm-trustzone-

cryptocell-312-simplifying-the-design-of-secure-iot-systems.

[4] W. contributors, "Transport Layer Security," [Online]. Available:
https://en.wikipedia.org/wiki/Transport_Layer_Security

[5] K. G. T. J. Nimrod Aviram, "Session Resumption Protocols and

Efficient Forward Security for TLS 1.3 0-RTT," Journal of Cryptology,
18 May 2021. [Online]. Available:

https://link.springer.com/article/10.1007/s00145-021-09385-0.

[6] N. S. Academy, "Cellular IoT Fundamentals," [Online]. Available:

https://academy.nordicsemi.com/courses/cellular-iot-fundamentals/.

197

http://home.arevatech.am/

