
Development and Deployment of TLS Communication 

Protocol in IoT Devices Using MQTT and CoAP 

Protocols 

Mariam Gevorgyan 
National Polytechnic University of Armenia 

Yerevan, Armenia 

e-mail: mariamgevorgyan.tt055-1@polytechnic.am 

Abstract— In the rapidly evolving field of Internet of Things 

(IoT) technologies, secure data exchange has become a 

significant challenge for devices with limited resources. This 

paper examines the implementation of the Transport Layer 

Security (TLS) protocol for IoT devices utilizing the MQTT and 

CoAP communication standards. It presents a system designed 

to ensure data confidentiality, integrity, and authentication 

through the use of Datagram TLS (DTLS) 1.2, a specific 

handshake model, and Pre-Shared Key (PSK) authentication. 

The approach leverages the nRF9160 DK and Thingy devices, 

which are powered by Arm Cortex-M33 processors and 

equipped with integrated CryptoCell310 security subsystems. 

MQTT facilitates a publish/subscribe message exchange model 

through Mutual TLS, while CoAP enables RESTful requests 

secured by DTLS. Sensor data are encrypted and transmitted 

over Bluetooth Low Energy (BLE), with handshake validation 

conducted through traffic analysis using Wireshark and PSK 

decryption. This research highlights that lightweight TLS 

modules, configured with CoAP and MQTT protocols and 

incorporating ARM’s TrustZone technology, can afford secure 

and efficient communication in constrained environments 

without sacrificing performance. 
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I. INTRODUCTION 

      With the widespread proliferation of Internet of Things 

(IoT) devices, secure communication and data protection have 

become primary concerns. This article explores the 

development of an adaptive and lightweight security 

methodology for implementing Transport Layer Security 

(TLS). We have chosen the Constrained Application Protocol 

(CoAP) and Message Queuing Telemetry Transport (MQTT) 

as foundational communication layers because of their 

suitability for low-power devices. Key components such as 

ARM TrustZone, the CryptoCell security subsystem, JSON 

Web Token (JWT) authentication, and Pre-Shared Key (PSK) 

handshake models have been integrated to ensure both 

flexibility and system efficiency. 

II. ARM ARCHITECTURE AND CRYPTOCELL SECURITY 

SUBSYSTEM WITH ARM TRUSTZONE 

      ARM (Advanced RISC Machine) [1] architecture is a 

family of computer processor architectures based on the RISC 

(Reduced Instruction Set Computing) model, developed by 

ARM Holdings. ARM processors are widely used in a variety 

of electronic devices, including smartphones, tablets, 

wearable devices, embedded systems, IoT devices, and 

servers. 

      ARM architecture integrates security technologies 

through a Trusted Execution Environment (TEE), enabling 

sensitive code execution in isolated and secure zones free 

from interference by other system components. The most 

commonly used TEE implementation is TrustZone, 

introduced by ARM in the ARMv8-M profile. TrustZone 

splits system resources into secure and non-secure domains, 

establishing a security boundary within a single device. This 

segmentation supports secure boot, trusted firmware updates, 

and root-of-trust installations—ensuring secure IoT 

applications without compromising performance. 

      Through the TrustZone approach, ARM supports the 

CryptoCell security subsystem, which serves as a hardware-

based root of trust and facilitates cryptographic operations 

within the device. It is physically isolated and accessed via 

dedicated software APIs. 

      CryptoCell [2] resides in the secure domain defined by 

TEE in the ARM architecture. Developers can interact with it 

using specialized APIs for encryption tasks. By offering rich 

cryptographic and security resources, CryptoCell strengthens 

IoT application resilience against cyber threats and is 

specifically optimized for energy-constrained devices. 

      In IoT devices, the inclusion of isolated security 

subsystems such as CryptoCell provides: 
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• Efficient processor usage: Delegating encryption to 

a dedicated subsystem reduces CPU load and 

streamlines overall system performance. 

• Reduced power consumption: The subsystem 

remains mostly in standby mode and activates 

efficiently when needed. 

• Enhanced security: Isolation strengthens protection 

against unauthorized software and physical 

tampering. 

• Improved performance: Tasks run faster within the 

security subsystem due to its streamlined 

architecture and dedicated functionality. 

      CryptoCell also acts as a root of trust, supporting the 

following functional domains: 

• Control domain: Manages subsystem access and 

information exchange. 

• Data interface domain: Handles secure data storage 

and transmission. 

• Symmetric cryptography domain: Performs AES 

or ChaCha20/Poly1305-based 

encryption/decryption. 

• Asymmetric cryptography domain: Enables ECC 

or RSA encryption/decryption. 

• Security resource domain: Delivers various 

protective mechanisms, transforming the system 

from a simple accelerator into a full-featured security 

processor. 

      The nRF9160 DK includes the CryptoCell 310 subsystem, 

supporting the following cryptographic features: [3] 

• True Random Number Generation (TRNG) 

• Pseudo-Random Number Generation (PRNG) using 

AES core 

• RSA public-key cryptography 

• ECC-based cryptography, including: 

• NIST FIPS 186-4 curves (using pseudo-

random parameters) 

• SEC 2 curves (using pseudo-random 

parameters) 

• Koblitz curves (using fixed parameters) 

• Edwards/Montgomery curves 

• ECDH/ECDSA support 

• Secure Remote Password (SRP) protocol 

• Hashing functions: 

• SHA-1 

• SHA-2 (up to 256-bit) 

• HMAC (Keyed-hash Message 

Authentication Code) 

• Symmetric encryption: 

• AES 

• ChaCha20/Poly1305 

 

III. SECURE COMMUNICATION PROTOCOLS  

 

      TLS protocol: TLS (Transport Layer Security)[4] is a 

transport layer protocol designed to secure communication 

over computer networks. It ensures the confidentiality, 

integrity, and authenticity of data exchanged between clients 

and servers. 

      To enable TLS on a website or application, an SSL/TLS 

certificate must be installed on the server. This certificate is 

issued by a Certificate Authority (CA) to the individual or 

organization that owns the domain. The certificate contains 

essential information about domain ownership as well as the 

server’s public key, both of which are critical for verifying the 

server’s identity. 

      During the TLS handshake, a cryptographic suite is 

established for each communication session. A cipher suite is 

a set of algorithms that defines the keys and encryption 

techniques to be used throughout the session. 

      TLS 1.2 does not inherently support Zero Round-Trip 

Time (0-RTT)[5], a feature introduced in TLS 1.3. This 

feature, also known as “early data,” allows the client to start 

sending application-layer data—such as HTTP requests—

without waiting for the handshake to complete, thereby 

reducing connection latency. 

      However, some implementations of TLS 1.2 may include 

extensions that mimic 0-RTT behavior. These typically rely 

on Pre-Shared Keys (PSKs) or session resumption 

mechanisms to achieve similar efficiency. The system we 

designed uses PSKs to implement the concept of 0-RTT 

communication. 

      Since IoT devices are resource-constrained, with limited 

memory, storage, processing power, battery capacity, and 

bandwidth, it is more effective to secure them using the CoAP 

protocol, which incorporates TLS through its datagram 

variant, DTLS. 

      CoAP protocol: CoAP (Constrained Application 

Protocol)[6] is a transport layer protocol based on UDP, 

specifically designed for communication between constrained 

devices. Its connectionless nature allows endpoints to 

communicate without prior negotiation, making it especially 

useful in systems that monitor status changes and exchange 

state information between clients and servers. 

      CoAP employs a request-response mechanism with a one-

to-one architecture, functioning without any intermediary 

components. The protocol architecture of CoAP is illustrated 

in Figure 1. 

 
Figure 1. CoAP protocol architecture 

 

      CoAP minimizes network traffic by transmitting compact 

messages using CBOR (Concise Binary Object 

Representation) formatting rather than JSON.  

Each CoAP endpoint supports CBOR to optimize traffic by 

reducing or compressing payload sizes. JSON is also 

supported, but using CBOR with CoAP can decrease data 

usage by up to 75%. 

      CBOR is a compact serialization format designed to 

represent structured data efficiently. It aims to achieve the 

same goals as JSON but employs a more succinct binary 

encoding. 

      All CoAP communication with nRF Cloud occurs over 

DTLS (Datagram Transport Layer Security) on port 5684 for 

server authentication. The server presents its X.509 
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certificate, while the device does not. The device verifies the 

server's certificate and then sends its JWT (JSON Web Token) 

to establish its identity. Once authenticated, the device and 

server can continue secure communication. 

      MQTT protocol: MQTT[6] is a lightweight 

publish/subscribe protocol for message exchange. 

      The structure of the MQTT network is illustrated in Figure 

2. 

 
Figure 2. MQTT network structure 

 

      nRF Cloud is hosted on AWS and uses the AWS IoT Core 

MQTT broker to process messages sent and received through 

MQTT topics. 

      The MQTT publish/subscribe process works as follows: 

• The device or modem-based MQTT client connects 

to the nRF Cloud MQTT endpoint. 

• It publishes a JSON message to a specified topic. 

• The MQTT broker receives the message. If a rule is 

defined and its criteria are met, the rule triggers an 

action—such as storing the message in a database or 

republishing a subset of its data to another topic. 

      All communication with the AWS IoT MQTT broker must 

use Mutual TLS on port 8883. This requires MQTT-enabled 

devices to possess an X.509 certificate and be registered with 

nRF Cloud. 

      MQTT (Message Queuing Telemetry Transport) is a 

widely used IoT protocol operating at the application layer 

over TCP, primarily suited for backend cloud platforms. It 

excels in event-driven systems with multiple nodes 

interacting, often based on sensor readings. 

      MQTT includes a keep-alive mechanism that maintains a 

persistent connection between the client and the broker—but 

this increases energy consumption. The client sets a keep-

alive interval during connection initialization, which defines 

the maximum time they may remain connected without 

sending a message. The broker may enforce a maximum keep-

alive duration (typically 60 seconds). If the client's interval 

exceeds this, the broker may terminate the connection. 

      MQTT transmits credentials in plain text and doesn’t 

include built-in authentication or security mechanisms—but it 

does support encryption via TLS. Enabling TLS secures 

communication between the MQTT client and broker. 

 

IV. RESULTS 

      TLS implementation was performed on nRF9160 DK and 

Thingy devices powered by the ARM Cortex-M33 

architecture, both of which integrate the CryptoCell310 

security subsystem. This subsystem supports symmetric and 

asymmetric cryptographic operations, TRNG/PRNG 

mechanisms, and ECC and AES algorithm acceleration.  

      The TLS module is deployed using DTLS 1.2, suitable for 

UDP-based protocols such as CoAP and MQTT. The 0-RTT 

connection model enables bypassing traditional handshake 

phases using pre-shared keys (PSKs), significantly reducing 

connection latency. 

      Traffic encryption and decryption were validated via 

Wireshark, confirming successful DTLS handshake results, 

the cipher suites listed in the Client Hello packet, and the 

server’s response certificates.  

      MQTT operated over Mutual TLS, establishing a secure 

channel from the device to the broker and the designated 

server at home.arevatech.am. CoAP utilized DTLS 1.2 with 

Connection ID (CID), enabling persistent and secure 

sessions—even when the device’s IP address changed. 

      Environmental data from the Thingy device’s built-in 

sensors was securely transferred to the host device via BLE, 

then forwarded to cloud systems using MQTT/CoAP APIs. 

      Within Wireshark, cipher suite negotiation and session 

key validation were carried out during the DTLS handshake 

using the supplied PSK. 

      The nRF9160DK Thingy includes sensors capable of 

collecting environmental parameters such as humidity, 

temperature, brightness, and more. 

      Temperature acquisition is shown in Figure 3. 

Figure 3. Temperature acquisition 

      To send data to home.arevatech.am, first assign a topic 

name to the topic field, followed by a specific message 

categorized under that topic. Once this is configured, clicking 

the Publish button will transmit the message to the designated 

host. home.arevatech.am acts as the server, functioning as an 

MQTT Broker for the MQTT protocol. The figure below 

illustrates that the message has been successfully delivered to 

the specified host. 

      Figure 4 shows the sent message. 

 

 
 

Figure 4. Sent message 

 

      The nRF9160 DK is configured to periodically check the 

incoming data and output it to the terminal. By pressing the 1 

button on the keypad, the GET request result is obtained, 

which is shown in Figure 5. 

 
Figure 5. GET request and response 

 

      Using both buttons, we get the response to the PUT 

request, as shown in Figure 6. 

 
Figure 6. PUT request and response 
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      To decrypt traffic, it is first necessary to capture trace data. 

The Cellular Monitor provides the capability to record a 

modem trace and save it as a raw file. 

      Using the ip keyword, we filter the traffic of a newly 

connecting device. In these packets, IP traffic can be divided 

into 3 parts: 

• DNS lookup 

• DTLS handshake 

• Encrypted application data 

 

      Figure 7 shows traffic from a newly connected device. 

 

 
Figure 7. Traffic from a newly connected device 

 

      Examining these three scenarios is particularly helpful 

when the device fails to connect to the server. Often, the most 

insightful packet is the Client Hello. This is the first packet 

sent from the device to the server and contains numerous 

details about the device’s supported capabilities. 

      In our case, we can see that the device uses PSK as the 

method for authentication and encryption, and intends to 

initiate a connection with the server at home.arevatech.am. 

      By clicking on the Client Hello packet, we can view the 

list of supported cipher suites, which is shown in Figure 8. 

 

 
Figure 8. Cipher suites 

 
      In this protocol, we can see the response message sent by 

the server, as shown in Figure 9. 

 

 
Figure 9. Decrypted message 

      Another way to decrypt DTLS is to use PSKs. The DTLS 

handshake ends with an "Encrypted Handshake Message," 

after which only encrypted application data is transmitted. 

However, by providing Wireshark with the PSK used in the 

DTLS connection, we can decrypt the traffic, which is shown 

in Figure 10. 

 

 
Figure 10. Traffic decryption with PSK 

 

      The DTLS handshake using the 0-RTT PSK method 

reduced connection establishment time by more than 25%, 

providing significant relief for low-power microcontrollers. 

      It’s important to note that traffic decryption is only 

possible when PSK-based cipher suites are used. In cases 

where asymmetric key cipher suites are applied, a symmetric 

session key is generated and exchanged via the Diffie-

Hellman key exchange protocol. Since the modem does not 

expose the generated symmetric key, decrypting the traffic 

becomes impossible. 

V. CONCLUSION 

      Examining these three scenarios is particularly helpful 

when the device fails to connect to the server. Often, the most 

insightful packet is the Client Hello. This is the first packet 

sent from the device to the server and contains numerous 

details about the device’s supported capabilities. 

      In our case, we can see that the device uses PSK as the 

method for authentication and encryption, and intends to 

initiate a connection with the server at home.arevatech.am. 

      The security challenges of IoT devices can be effectively 

addressed through the implementation of TLS/DTLS 

protocols—particularly using PSK and 0-RTT techniques. 

Deploying CryptoCell310 within an ARM TrustZone 

environment ensures a reliable platform for cryptographic 

functionality, supporting ECC, AES, SHA, and RNG. 

      Decryption tests conducted via Wireshark confirm that the 

PSK model enables not only a lightweight handshake process 

but also full traffic visibility and control. 

     MQTT and CoAP protocols, featuring Mutual TLS and 

DTLS support, enable efficient communication across various 

application-layer environments. Data exchange from device to 

cloud, secured through JWT authentication and CBOR 

formatting, helps optimize data flow and reduce power 

consumption. 
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