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Abstract—This paper explores the theoretical and practical 

aspects of the Wave-Based Search algorithm in modern, complex 

graph structures. An abstract model of wave search is 

introduced, based on the Breadth-First Search (BFS) method, 

yet offering a high degree of parallelism. The algorithm is 

discussed in the context of tree structures, semantic networks, 

and extended graphs, where parallel processing of wavefronts 

and results folding is possible. The paper also presents 

implementation examples using the F# programming language. 
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I. INTRODUCTION  

In modern data structures—particularly semantic 

networks and complex graph models—efficient information 

retrieval is a critical task. Traditional search algorithms, such 

as Depth-First Search (DFS) and Breadth-First Search (BFS), 

provide a strong foundation but are inherently limited by their 

sequential execution nature. 

Wave-Based Search is a parallelized version of BFS that 

divides the search process into waves, or levels. This structure 

enables the use of parallel processing resources, especially 

when dealing with complex or segmented structures. 

This study examines the principles of Wave-Based Search, 

its parallelization capabilities, and its application in semantic 

networks and subnetworks. It also provides formal 

justification and performance analysis, along with practical 

examples and an implementation in F#. 
 

II. RELATED WORK 

In one of the earliest works on wave search, Archvadze 

and Pkhovelishvili (2012) discussed the tree-structured 

representation of the Georgian language dictionary and its 

further processing using functional programming tools. 

In recent years, wavefront-based parallel search 

algorithms have received increasing attention, particularly in 

large-scale and highly connected graphs. Liu et al. (2024) 

introduced PASGAL—a parallel-optimized graph analytics 

framework that employs a wavefront-style approach with 

vertical granularity control (VGC) to address performance 

challenges in wide-diameter graphs. 

Zhang et al. (2023) developed Parallel Clustered BFS 

(C-BFS), which combines bit-level optimization with multi-

threaded support to significantly reduce latency in landmark 

labeling and shortest-path queries. This model effectively 

extends wave-based search to multi-source scenarios. 

Bilo et al. (2023) examined the deterministic performance 

of Bidirectional BFS in real-world networks, demonstrating 

that sublinear performance can be achieved through proper 

wave scheduling. 

Collectively, these studies confirm the high potential of 

the wave-based approach for both parallel graph processing 

and knowledge-based systems, aligning with the purpose of 

the present paper: to demonstrate the effective use of wave-

based search in semantic and extended networks through 

subnetwork integration. 

These studies confirm the high potential of wave-based 

approaches for both parallel graph processing and knowledge-

based systems, aligning with the purpose of the present paper. 
 

III. MOTIVATION 

The core motivation of this study arises from a 

fundamental question: Why do traditional search methods fail 

to operate efficiently in semantic systems? 

Traditional graph search algorithms assume structural 

graphs where connections are syntactic rather than semantic. 

They are effective when: 
 
• The graph is standardized (e.g., road networks). 

• Connections represent clear physical or logical 

routes. 

• Node semantics are irrelevant to the search process. 
 
However, semantic networks differ: nodes are connected 

not only structurally but also by meaning and context. For 

example, the concept “cat” may connect to “animal”, “pet”, or 

“predator”. In such networks, traditional algorithms face key 

limitations: 
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• They cannot account for meaning or context. 

• They fail to address polysemy or the intensity of 

associations. 

• They operate sequentially, lacking parallelism, 

which makes them inefficient for large semantic graphs. 
 
Modern applications where faster and parallel semantic 

search is required include: 

1. AI Assistants (e.g., Siri, Alexa, Google Assistant). 

2. Large Language Models (e.g., GPT, BERT, 

LLaMA). 

3. Semantic Search Engines (e.g., Google Scholar, 

Semantic Scholar). 

4. Medical Decision Support Systems. 

5. Cybersecurity and Intelligence Analysis. 
 

IV. WAVE-BASED SEARCH IN TREE STRUCTURES 

WBS is rooted in BFS but enhances parallelism by 

evaluating nodes in waves simultaneously. 

Core Principle. 

The structure of wave progression can be illustrated as 

follows (see Fig.): 

 
Fig. Waves during search: 

➢ A – root 

➢ B, C – first wave nodes 

➢ D, E, F – second wave 

➢ G, H, J – third wave, and so on 

 

The search starts at the root node. If the target value is 

found at the root, the search ends successfully. Otherwise, the 

process continues to the first wave—the child nodes directly 

connected to the root. The key advantage here is that all nodes 

within the current wave can be evaluated simultaneously, 

significantly improving performance. 

If the target is not found in the first wave, the search 

proceeds to the second wave—children of the first wave 

nodes. This process continues until the target is found or all 

leaf nodes are exhausted. 
 

• Search begins at the root node. 

• If the target is found at the root, the process 

terminates. 

• Otherwise, the first wave (child nodes) is evaluated 

in parallel. 

• If unsuccessful, the second wave (children of the first 

wave) is processed, and so on. 
 

Example. 

In a tree structure, a root node A connects to children B 

and C. They form the first wave. 

The next wave includes their children, such as D, E, F. 

The third wave may contain G, H, J, and so forth. 

Key Innovation. 
 
• Semantic relevance determines the propagation and 

intensity of the wave. 

• Waves do not expand in all directions but selectively 

follow the strongest paths. 

• Processes across neighboring nodes can occur in 

parallel. 
 
This is analogous to a droplet falling into water: the ripple 

spreads outward, but not uniformly; it propagates more 

strongly where resistance is lower or semantic relevance is 

higher. 

Wave-Based Search is a method for parallel information 

retrieval in tree structures, based on the principles of Breadth-

First Search (BFS). Unlike traditional BFS, it emphasizes the 

parallel evaluation of each wave, making it particularly suited 

for multi-core or clustered architectures. 

 

A.  Parallelization Capabilities 

 

All nodes within a given wave are independent of each 

other, which allows for parallel processing. This approach is 

especially effective when searching large trees or when real-

time responsiveness is required. 

The Wave-Based Search method can be extended to 

semantic networks by leveraging the concept of 

subnetworks. This enables the representation and processing 

of complex knowledge structures in a distributed and 

parallelized manner. 
 

V. FUNCTIONAL PROGRAMMING AND PARALLELISM 

Functional programming languages (e.g., F#, Haskell, 

OCaml) are well-suited for implementing WBS: 
 
• Recursion: Each wave depends on the previous, 

aligning naturally with recursive functions. 

• Immutability: Reduces side effects, making parallel 

execution safe and efficient. 

• Built-in Parallelism: Libraries such as Parallel.map 

in F# or par in Haskell enable straightforward workload 

distribution. 
 
Thus, functional programming offers both conceptual and 

technical compatibility with WBS. 
 

VI. IMPLEMENTATION EXAMPLE IN F#:  WAVE-BASED 

SEARCH IN TREE STRUCTURES 

open System.Threading.Tasks 

 

type Tree<'T> = 

| Node of 'T * List<Tree<'T>> 

 

// Parallel Wave Search 
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let rec waveSearchParallel  

              (predicate: 'T -> bool) 

            (tree: Tree<'T>) =let rec searchWave wave = 

match wave with 

| [] -> None 

| _ -> 

// in parallel to check Current Wave 

let results = 

waves 

|> List.map (fun (Node(value, _)) -> Task.Run(fun () -> if 

predicate value then Some value else None)) 

|> Task.WhenAll 

|> fun t -> t.Result |> Array.choose id 

             

if results.Length > 0 then 

Some(results.[0]) // First Result Return 

else 

let nextWave = 

waves 

|> List.collect (fun (Node(_, children)) -> children) 

searchWave nextWave 

searchWave [tree] 

 

Data usage Example: 

 

let exampleTree = 

Node(1, [ 

Node(2, [Node(5, []); Node(6, [])]); 

Node(3, [Node(7, [])]); 

Node(4, []) 

]) 

 

let found = waveSearchParallel ((=) 7) exampleTree 

match found with 

| Some v -> printfn "Value found: %d" v 

| None -> printfn "Value not found" 
 

VII. WAVE-BASED SEDETAILARCH IN SEMANTIC 

NETWORKS 

Originally developed for tree-like structures, the Wave-

Based Search method can be extended to semantic networks. 

This approach enables efficient depth-limited search within 

interconnected knowledge structures, especially in 

multiprocessor environments. 

Also known as multi-level parallel search, Wave-Based 

Search begins at a predefined point in the network (a root or 

starting node) and proceeds in successive waves or layers, 

each including adjacent nodes. Each wave contains all 

previously unvisited nodes that are topologically equidistant 

from the starting point. Unlike depth-first search, this method 

allows all nodes within a layer to be evaluated in parallel. 
 

A. Algorithmic Constraints for Semantic Networks 

 

To adapt Wave-Based Search to semantic networks, 

additional constraints must be implemented: 
 

• Depth limitation: A maximum number of waves (or 

levels) must be defined to prevent uncontrolled traversal. 

• Visited node marking: Each visited node must be 

properly marked to avoid infinite loops in cyclic graphs. 

• Subnetwork integration (as per Woods): Nodes may 

belong to subgraphs with differing structures or 

semantics, and the integration of these subgraphs must be 

accounted for. 

 

Woods [5,6] introduced the concept of subnets—portions 

of semantic networks representing distinct structures or 

domains. This enables specialized processing: 

 

• Subnetworks may represent distinct knowledge 

domains or linguistic layers (e.g., morphological 

analysis). 

• Subnetworks are processed independently of the 

main network and therefore in parallel. 

• Once processed, the results from subnetworks are 

reintegrated into the main network. 

 

Example 1:  

In a linguistic semantic network, the main graph may 

represent the syntactic structure of a sentence, while 

subnetworks handle the morphological or lexical analysis of 

individual words. 

Example 2:  

In a monolingual dictionary's semantic network, 

subnetworks may contain multilingual translations or 

contextual explanations, often with distinct internal structures. 

Illustrative Example. 

Start node: “Toy” 
 
• First wave: Toy → Child; Toy → Game; Toy → Design. 

• Second wave: Child → Motor Skills; Game → 

Communication; Design → Visual Perception. 
 

All nodes within a given wave are processed 

simultaneously, ensuring broad coverage with contextual 

relevance. 
 

B. Benefits of Parallel Subnetwork Processing 
 

In Woods’ model, the independence of subnetworks aligns 

well with modern multi-core and distributed architectures. 

Each subnetwork can be processed simultaneously, which: 
 

• Enhances performance in knowledge-based systems 

• Enables advanced, reasoning-driven analysis in 

complex domains 

• Supports scalability in artificial intelligence and 

natural language processing applications 

 

C. F# Example (Simplified): Wave-Based Search with 

Subnetworks 
 

let rec waveSearch graph startNode maxDepth matchFn = 

let rec searchWave currentWave depth visited = 

if depth > maxDepth || List.isEmpty currentWave then 

None 

else 

match currentWave |> List. tryFind matchFn with 

| Some node -> Some node 
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| None -> 

let nextWave = 

currentWave 

|> List.collect (fun node -> graph.[node]) 

|> List.filter (fun n -> not (Set.contains n visited)) 

let visited' = Set.union visited (Set.ofList nextWave) 

searchWave nextWave (depth + 1) visited' 

 

searchWave [startNode] 0 (Set.singleton startNode) 

 

Thus, Wave-Based Search—enhanced with subnetwork 

support and executed in parallel environments—becomes a 

powerful tool for multicomponent search and inference in 

semantic systems. The structurally diverse subnetwork model 

introduced by Woods enables expressive and generalized 

knowledge representation, particularly in natural language 

processing and expert systems. 

Detailed Explanation of Constraints and Their 

Implementation 

Content: 
 
 Constraints define rules to prune the search space 

 Examples include: 

 Avoiding revisiting already explored nodes 

 Preventing cycles and contradictory paths 

 Enforcing semantic consistency between connected 

nodes 

 Implemented via: 

 State tracking mechanisms 

 Rule-based filters 

 Threshold limits on search depth or breadth 

 Result: more focused and logically sound search 

process 
 
This slide provides a closer look at the constraints applied 

in the wave-based search algorithm. These rules help prune 

the search space by avoiding revisiting nodes and preventing 

cycles, which could lead to infinite loops or logical 

contradictions. Additionally, semantic consistency rules 

ensure that only meaningful connections are explored. 

Implementation often involves state tracking, rule-based 

filters, and limits on how deep or broad the search can go, 

resulting in a more efficient and reliable search process. 

 

VIII. REAL-WORLD VALUE OF THE WAVE-BASED SEARCH 

ALGORITHM 

Better Performance. Wave-based search avoids exhaustive 

traversal of irrelevant nodes by prioritizing semantically 

strong connections. This significantly reduces computational 

overhead compared to traditional BFS. 

High Scalability. The algorithm supports parallel 

processing of wavefronts, making it suitable for massive 

semantic graphs and distributed environments such as Big 

Data and Knowledge Graph systems. 

Structural Adaptability. Unlike BFS, the wave mechanism 

adapts to varying topologies and dynamically evolving 

networks. It does not rely on uniform graph structures, 

enabling flexible deployment in non-homogeneous semantic 

systems. 

Example: Real-World Application 

User query: 

"Recommend a book that develops logical thinking in 

children." 
 
• BFS might return all books labeled “for children.” 

• Wave-based search follows the semantic path: 

child → development → logical reasoning → 

recommended books, 

offering context-aware, precise results. 

 

IX. PERFORMANCE EVALUATION AND COMPLEXITY 

ANALYSIS 

To rigorously assess the efficiency of Wave-Based Search 

(WBS) compared to classical algorithms such as Breadth-First 

Search (BFS), we analyze both theoretical and empirical 

aspects. 

A. Theoretical Complexity 

Both BFS and WBS operate with a worst-case time 

complexity of: 

 

O(V + E) 

 

where V is the number of vertices and E is the number of 

edges. However, the essential difference lies in execution time 

under parallel conditions. If p processors (or threads) are 

available, the effective runtime of WBS can be expressed as: 

 

T_WBS ≈ (V + E) / p 

 

This approximation assumes balanced wavefront sizes and 

efficient workload distribution. Thus, WBS does not reduce 

asymptotic complexity, but achieves significant constant-

factor improvements in practice, especially when large 

wavefronts are processed simultaneously. 

B. Computational Example 

Consider a tree with n = 10^6 nodes and an average branching 

factor of b = 4. 

 

- Sequential BFS: All nodes are processed sequentially, 

resulting in approximately 10^6 operations. 

- WBS with p = 100 cores: Each wavefront contains, on 

average, 4,000 nodes. These nodes are distributed across 100 

cores, leading to only 40 operations per core per wavefront. 

 

This yields an estimated speedup of: 

 

S = T_BFS / T_WBS ≈ p = 100 

 

Hence, WBS achieves a 100-fold improvement in processing 

speed under ideal parallel conditions. 

C. Semantic Network Example 

In a semantic search scenario, suppose a query requires 

exploring 5 waves, each with 2,000 nodes. 

 

- Sequential BFS: 5 × 2000 = 10,000 node checks. 

- WBS with 20 cores: Each wavefront of 2,000 nodes is 

divided into 100 per core, yielding a total of 5 × 100 = 500 

node checks per core. 
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      This represents a 20× reduction in effective processing 

load compared to BFS. 

 

 

D. Results Summary 

Scenario Sequential 

BFS (ops) 

WBS with 

20 cores 

WBS with 

100 cores 

Large tree 

(10^6 nodes) 

1,000,000 50,000 10,000 

Semantic 

search (5 

waves) 

10,000 500 200 

 

The results demonstrate that while BFS and WBS share 

the same theoretical complexity, the parallel wave-based 

mechanism offers dramatic reductions in execution time. The 

larger and more interconnected the network, the higher the 

benefit from parallelization. 

 

X. CONCLUSION 

Wave-Based Search represents a hybrid approach based 

on BFS and parallel algorithms. Its efficiency is especially 

evident in semantic networks, where subnetwork processing 

is required and multiprocessor resources are available. 

We recommend using Wave-Based Search when: 
 

• A parallel architecture is available (e.g., HPC or 

multicore CPUs); 

• The semantic network is complex and composed of 

multiple subsystems; 

• The search must be bounded by a defined depth 

(Depth-Limited Reasoning). 

 

This method enables scalable, efficient, and semantically 

aware search operations within both tree-structured and 

interconnected graph-based knowledge systems. 
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