
Wave-Based Search Algorithm in Semantic and

Extended Networks, Parallelism and Applications

Merab Pkhovelishvili

Faculty of Informatics and Control

Systems

 Georgian Technical University

Tbilisi, Georgia

e-mail: m.pkhovelishvili@gtu.ge

Natela Archvadze
Department of Computer Sciences

Faculty of Exact and Natural

Sciences

 Ivane Javakhishvili Tbilisi State

University

Tbilisi, Georgia

e-mail: natela.archvadze@tsu.ge

Lia Shetsiruli
Visiting Professor

 Grigor Robakidze University

Batumi, Georgia

e-mail: lika77u@gmail.com

Abstract—This paper explores the theoretical and practical

aspects of the Wave-Based Search algorithm in modern, complex

graph structures. An abstract model of wave search is

introduced, based on the Breadth-First Search (BFS) method,

yet offering a high degree of parallelism. The algorithm is

discussed in the context of tree structures, semantic networks,

and extended graphs, where parallel processing of wavefronts

and results folding is possible. The paper also presents

implementation examples using the F# programming language.

Keywords—Wave-Based Search, Breadth-First Search,

Semantic Networks, Parallel Algorithms, Subnetwork

Integration.

I. INTRODUCTION

In modern data structures—particularly semantic

networks and complex graph models—efficient information

retrieval is a critical task. Traditional search algorithms, such

as Depth-First Search (DFS) and Breadth-First Search (BFS),

provide a strong foundation but are inherently limited by their

sequential execution nature.

Wave-Based Search is a parallelized version of BFS that

divides the search process into waves, or levels. This structure

enables the use of parallel processing resources, especially

when dealing with complex or segmented structures.

This study examines the principles of Wave-Based Search,

its parallelization capabilities, and its application in semantic

networks and subnetworks. It also provides formal

justification and performance analysis, along with practical

examples and an implementation in F#.

II. RELATED WORK

In one of the earliest works on wave search, Archvadze

and Pkhovelishvili (2012) discussed the tree-structured

representation of the Georgian language dictionary and its

further processing using functional programming tools.

In recent years, wavefront-based parallel search

algorithms have received increasing attention, particularly in

large-scale and highly connected graphs. Liu et al. (2024)

introduced PASGAL—a parallel-optimized graph analytics

framework that employs a wavefront-style approach with

vertical granularity control (VGC) to address performance

challenges in wide-diameter graphs.

Zhang et al. (2023) developed Parallel Clustered BFS

(C-BFS), which combines bit-level optimization with multi-

threaded support to significantly reduce latency in landmark

labeling and shortest-path queries. This model effectively

extends wave-based search to multi-source scenarios.

Bilo et al. (2023) examined the deterministic performance

of Bidirectional BFS in real-world networks, demonstrating

that sublinear performance can be achieved through proper

wave scheduling.

Collectively, these studies confirm the high potential of

the wave-based approach for both parallel graph processing

and knowledge-based systems, aligning with the purpose of

the present paper: to demonstrate the effective use of wave-

based search in semantic and extended networks through

subnetwork integration.

These studies confirm the high potential of wave-based

approaches for both parallel graph processing and knowledge-

based systems, aligning with the purpose of the present paper.

III. MOTIVATION

The core motivation of this study arises from a

fundamental question: Why do traditional search methods fail

to operate efficiently in semantic systems?

Traditional graph search algorithms assume structural

graphs where connections are syntactic rather than semantic.

They are effective when:

• The graph is standardized (e.g., road networks).

• Connections represent clear physical or logical

routes.

• Node semantics are irrelevant to the search process.

However, semantic networks differ: nodes are connected

not only structurally but also by meaning and context. For

example, the concept “cat” may connect to “animal”, “pet”, or

“predator”. In such networks, traditional algorithms face key

limitations:

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_67 275

mailto:m.pkhovelishvili@gtu.ge
mailto:natela.archvadze@tsu.ge

• They cannot account for meaning or context.

• They fail to address polysemy or the intensity of

associations.

• They operate sequentially, lacking parallelism,

which makes them inefficient for large semantic graphs.

Modern applications where faster and parallel semantic

search is required include:

1. AI Assistants (e.g., Siri, Alexa, Google Assistant).

2. Large Language Models (e.g., GPT, BERT,

LLaMA).

3. Semantic Search Engines (e.g., Google Scholar,

Semantic Scholar).

4. Medical Decision Support Systems.

5. Cybersecurity and Intelligence Analysis.

IV. WAVE-BASED SEARCH IN TREE STRUCTURES

WBS is rooted in BFS but enhances parallelism by

evaluating nodes in waves simultaneously.

Core Principle.

The structure of wave progression can be illustrated as

follows (see Fig.):

Fig. Waves during search:

➢ A – root

➢ B, C – first wave nodes

➢ D, E, F – second wave

➢ G, H, J – third wave, and so on

The search starts at the root node. If the target value is

found at the root, the search ends successfully. Otherwise, the

process continues to the first wave—the child nodes directly

connected to the root. The key advantage here is that all nodes

within the current wave can be evaluated simultaneously,

significantly improving performance.

If the target is not found in the first wave, the search

proceeds to the second wave—children of the first wave

nodes. This process continues until the target is found or all

leaf nodes are exhausted.

• Search begins at the root node.

• If the target is found at the root, the process

terminates.

• Otherwise, the first wave (child nodes) is evaluated

in parallel.

• If unsuccessful, the second wave (children of the first

wave) is processed, and so on.

Example.

In a tree structure, a root node A connects to children B

and C. They form the first wave.

The next wave includes their children, such as D, E, F.

The third wave may contain G, H, J, and so forth.

Key Innovation.

• Semantic relevance determines the propagation and

intensity of the wave.

• Waves do not expand in all directions but selectively

follow the strongest paths.

• Processes across neighboring nodes can occur in

parallel.

This is analogous to a droplet falling into water: the ripple

spreads outward, but not uniformly; it propagates more

strongly where resistance is lower or semantic relevance is

higher.

Wave-Based Search is a method for parallel information

retrieval in tree structures, based on the principles of Breadth-

First Search (BFS). Unlike traditional BFS, it emphasizes the

parallel evaluation of each wave, making it particularly suited

for multi-core or clustered architectures.

A. Parallelization Capabilities

All nodes within a given wave are independent of each

other, which allows for parallel processing. This approach is

especially effective when searching large trees or when real-

time responsiveness is required.

The Wave-Based Search method can be extended to

semantic networks by leveraging the concept of

subnetworks. This enables the representation and processing

of complex knowledge structures in a distributed and

parallelized manner.

V. FUNCTIONAL PROGRAMMING AND PARALLELISM

Functional programming languages (e.g., F#, Haskell,

OCaml) are well-suited for implementing WBS:

• Recursion: Each wave depends on the previous,

aligning naturally with recursive functions.

• Immutability: Reduces side effects, making parallel

execution safe and efficient.

• Built-in Parallelism: Libraries such as Parallel.map

in F# or par in Haskell enable straightforward workload

distribution.

Thus, functional programming offers both conceptual and

technical compatibility with WBS.

VI. IMPLEMENTATION EXAMPLE IN F#: WAVE-BASED

SEARCH IN TREE STRUCTURES

open System.Threading.Tasks

type Tree<'T> =

| Node of 'T * List<Tree<'T>>

// Parallel Wave Search

276

let rec waveSearchParallel

 (predicate: 'T -> bool)

 (tree: Tree<'T>) =let rec searchWave wave =

match wave with

| [] -> None

| _ ->

// in parallel to check Current Wave

let results =

waves

|> List.map (fun (Node(value, _)) -> Task.Run(fun () -> if

predicate value then Some value else None))

|> Task.WhenAll

|> fun t -> t.Result |> Array.choose id

if results.Length > 0 then

Some(results.[0]) // First Result Return

else

let nextWave =

waves

|> List.collect (fun (Node(_, children)) -> children)

searchWave nextWave

searchWave [tree]

Data usage Example:

let exampleTree =

Node(1, [

Node(2, [Node(5, []); Node(6, [])]);

Node(3, [Node(7, [])]);

Node(4, [])

])

let found = waveSearchParallel ((=) 7) exampleTree

match found with

| Some v -> printfn "Value found: %d" v

| None -> printfn "Value not found"

VII. WAVE-BASED SEDETAILARCH IN SEMANTIC

NETWORKS

Originally developed for tree-like structures, the Wave-

Based Search method can be extended to semantic networks.

This approach enables efficient depth-limited search within

interconnected knowledge structures, especially in

multiprocessor environments.

Also known as multi-level parallel search, Wave-Based

Search begins at a predefined point in the network (a root or

starting node) and proceeds in successive waves or layers,

each including adjacent nodes. Each wave contains all

previously unvisited nodes that are topologically equidistant

from the starting point. Unlike depth-first search, this method

allows all nodes within a layer to be evaluated in parallel.

A. Algorithmic Constraints for Semantic Networks

To adapt Wave-Based Search to semantic networks,

additional constraints must be implemented:

• Depth limitation: A maximum number of waves (or

levels) must be defined to prevent uncontrolled traversal.

• Visited node marking: Each visited node must be

properly marked to avoid infinite loops in cyclic graphs.

• Subnetwork integration (as per Woods): Nodes may

belong to subgraphs with differing structures or

semantics, and the integration of these subgraphs must be

accounted for.

Woods [5,6] introduced the concept of subnets—portions

of semantic networks representing distinct structures or

domains. This enables specialized processing:

• Subnetworks may represent distinct knowledge

domains or linguistic layers (e.g., morphological

analysis).

• Subnetworks are processed independently of the

main network and therefore in parallel.

• Once processed, the results from subnetworks are

reintegrated into the main network.

Example 1:

In a linguistic semantic network, the main graph may

represent the syntactic structure of a sentence, while

subnetworks handle the morphological or lexical analysis of

individual words.

Example 2:

In a monolingual dictionary's semantic network,

subnetworks may contain multilingual translations or

contextual explanations, often with distinct internal structures.

Illustrative Example.

Start node: “Toy”

• First wave: Toy → Child; Toy → Game; Toy → Design.

• Second wave: Child → Motor Skills; Game →

Communication; Design → Visual Perception.

All nodes within a given wave are processed

simultaneously, ensuring broad coverage with contextual

relevance.

B. Benefits of Parallel Subnetwork Processing

In Woods’ model, the independence of subnetworks aligns

well with modern multi-core and distributed architectures.

Each subnetwork can be processed simultaneously, which:

• Enhances performance in knowledge-based systems

• Enables advanced, reasoning-driven analysis in

complex domains

• Supports scalability in artificial intelligence and

natural language processing applications

C. F# Example (Simplified): Wave-Based Search with

Subnetworks

let rec waveSearch graph startNode maxDepth matchFn =

let rec searchWave currentWave depth visited =

if depth > maxDepth || List.isEmpty currentWave then

None

else

match currentWave |> List. tryFind matchFn with

| Some node -> Some node

277

| None ->

let nextWave =

currentWave

|> List.collect (fun node -> graph.[node])

|> List.filter (fun n -> not (Set.contains n visited))

let visited' = Set.union visited (Set.ofList nextWave)

searchWave nextWave (depth + 1) visited'

searchWave [startNode] 0 (Set.singleton startNode)

Thus, Wave-Based Search—enhanced with subnetwork

support and executed in parallel environments—becomes a

powerful tool for multicomponent search and inference in

semantic systems. The structurally diverse subnetwork model

introduced by Woods enables expressive and generalized

knowledge representation, particularly in natural language

processing and expert systems.

Detailed Explanation of Constraints and Their

Implementation

Content:

 Constraints define rules to prune the search space

 Examples include:

 Avoiding revisiting already explored nodes

 Preventing cycles and contradictory paths

 Enforcing semantic consistency between connected

nodes

 Implemented via:

 State tracking mechanisms

 Rule-based filters

 Threshold limits on search depth or breadth

 Result: more focused and logically sound search

process

This slide provides a closer look at the constraints applied

in the wave-based search algorithm. These rules help prune

the search space by avoiding revisiting nodes and preventing

cycles, which could lead to infinite loops or logical

contradictions. Additionally, semantic consistency rules

ensure that only meaningful connections are explored.

Implementation often involves state tracking, rule-based

filters, and limits on how deep or broad the search can go,

resulting in a more efficient and reliable search process.

VIII. REAL-WORLD VALUE OF THE WAVE-BASED SEARCH

ALGORITHM

Better Performance. Wave-based search avoids exhaustive

traversal of irrelevant nodes by prioritizing semantically

strong connections. This significantly reduces computational

overhead compared to traditional BFS.

High Scalability. The algorithm supports parallel

processing of wavefronts, making it suitable for massive

semantic graphs and distributed environments such as Big

Data and Knowledge Graph systems.

Structural Adaptability. Unlike BFS, the wave mechanism

adapts to varying topologies and dynamically evolving

networks. It does not rely on uniform graph structures,

enabling flexible deployment in non-homogeneous semantic

systems.

Example: Real-World Application

User query:

"Recommend a book that develops logical thinking in

children."

• BFS might return all books labeled “for children.”

• Wave-based search follows the semantic path:

child → development → logical reasoning →

recommended books,

offering context-aware, precise results.

IX. PERFORMANCE EVALUATION AND COMPLEXITY

ANALYSIS

To rigorously assess the efficiency of Wave-Based Search

(WBS) compared to classical algorithms such as Breadth-First

Search (BFS), we analyze both theoretical and empirical

aspects.

A. Theoretical Complexity

Both BFS and WBS operate with a worst-case time

complexity of:

O(V + E)

where V is the number of vertices and E is the number of

edges. However, the essential difference lies in execution time

under parallel conditions. If p processors (or threads) are

available, the effective runtime of WBS can be expressed as:

T_WBS ≈ (V + E) / p

This approximation assumes balanced wavefront sizes and

efficient workload distribution. Thus, WBS does not reduce

asymptotic complexity, but achieves significant constant-

factor improvements in practice, especially when large

wavefronts are processed simultaneously.

B. Computational Example

Consider a tree with n = 10^6 nodes and an average branching

factor of b = 4.

- Sequential BFS: All nodes are processed sequentially,

resulting in approximately 10^6 operations.

- WBS with p = 100 cores: Each wavefront contains, on

average, 4,000 nodes. These nodes are distributed across 100

cores, leading to only 40 operations per core per wavefront.

This yields an estimated speedup of:

S = T_BFS / T_WBS ≈ p = 100

Hence, WBS achieves a 100-fold improvement in processing

speed under ideal parallel conditions.

C. Semantic Network Example

In a semantic search scenario, suppose a query requires

exploring 5 waves, each with 2,000 nodes.

- Sequential BFS: 5 × 2000 = 10,000 node checks.

- WBS with 20 cores: Each wavefront of 2,000 nodes is

divided into 100 per core, yielding a total of 5 × 100 = 500

node checks per core.

278

 This represents a 20× reduction in effective processing

load compared to BFS.

D. Results Summary

Scenario Sequential

BFS (ops)

WBS with

20 cores

WBS with

100 cores

Large tree

(10^6 nodes)

1,000,000 50,000 10,000

Semantic

search (5

waves)

10,000 500 200

The results demonstrate that while BFS and WBS share

the same theoretical complexity, the parallel wave-based

mechanism offers dramatic reductions in execution time. The

larger and more interconnected the network, the higher the

benefit from parallelization.

X. CONCLUSION

Wave-Based Search represents a hybrid approach based

on BFS and parallel algorithms. Its efficiency is especially

evident in semantic networks, where subnetwork processing

is required and multiprocessor resources are available.

We recommend using Wave-Based Search when:

• A parallel architecture is available (e.g., HPC or

multicore CPUs);

• The semantic network is complex and composed of

multiple subsystems;

• The search must be bounded by a defined depth

(Depth-Limited Reasoning).

This method enables scalable, efficient, and semantically

aware search operations within both tree-structured and

interconnected graph-based knowledge systems.

 REFERENCES

[1] N. Archvadze and M. Pkhovelishvili, “Wave-Based Search in Tree

Structures Using Functional Programming Techniques”, GESJ:

Computer Science and Telecommunications, no. 2(34), pp. 59-70,

2012.
[2] Z. Liu, X. Li, J. Huang and G. Yuan, “PASGAL: A Parallel and

Scalable Framework for Large-scale Graph Analytics”, Proceedings of

the 39th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2024. [Online]. Available:

https://arxiv.org/abs/2404.17101

[3] Y. Zhang, M. Chen and X. Wu, “Clustered Parallel BFS with Bit-Level
Optimization for Shortest Path Labeling”, Proceedings of the 32nd

International Conference on Parallel Architectures and Compilation

Techniques (PACT), ACM, 2023.
[4] D. Bilo, L. Gualà, G. Proietti, “Deterministic Bidirectional BFS in

Real-World Networks: Complexity and Bounds”, International

Workshop on Combinatorial Algorithms (IWOCA 2023), Lecture
Notes in Computer Science, Springer, vol. 14077, pp. 32–43, 2023.

[5] A. William, Woods, Foundations for Semantic Networks. Academic

Press, 1975.
[6] L. Lortkipanidze, N. Amirezashvili, A. Chutkerashvili, N. Javashvili

and L. Samsonadze, “Syntax Annotation of the Georgian Literary

Corpus”, Theoretical Computer Science and General Issues. 11th
International Tbilisi Symposium on Logic, Language, and

Computation, TbiLLC 2015, Tbilisi, Georgia, 21-26 September,

Revised Selected Papers, pp. 89–97, 2015.

279

