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Abstract—The paper formulates and numerically investigates
the tasks of stopping and stimulating the dissemination of
information in online social networks for a mean-field model
and a model based on artificial neural networks. The mean
field model is reduced to a joint solution of initial boundary
value problems for the Kolmogorov-Fokker-Planck (KFP) and
Hamilton-Jacobi-Bellman (HJB) equations, as well as the Nash
optimality condition. Numerical methods for solving systems of
KFP and HJB in high dimensions are practically nonexistent
due to the need for grid-based spatial discretization. Therefore,
we propose a deep learning algorithm based on the generative
adversarial network. We parameterize the value (the solution of
HJB) and density (the solution of KFP) functions by two neural
networks that solve a convex-concave saddle-point problem.

Keywords—Mean-field control, deep learning, physics-
informed neural networks, Kolmogorov-Fokker-Planck equation,
Hamilton-Jacobi-Bellman equation, Nash equilibrium.

I. INTRODUCTION

In the contemporary digital age, online social networks
have emerged as powerful platforms, significantly influencing
communication patterns, public opinion, and the dissemination
of information on a global scale [1]. With the increasing
penetration of digital technologies and the ubiquity of social
media, understanding and managing the dynamics of informa-
tion spread has become a subject of pressing importance across
multiple domains—including sociology, information science,
and applied mathematics. Amidst the many benefits brought
by social networks, challenges such as the rapid propagation
of unverified information, rumor diffusion, and breaches of
privacy have raised concerns about the need for effective
control mechanisms.

The process of information dissemination in online social
networks can be described by the nonlinear diffusion-logistic
equation [2], the coefficients and initial data of which charac-
terize the dissemination of particular information. And adding
a control parameter that ensures the Nash equilibrium in the
system of interacting agents and minimizes costs, allows one
to control the process and transform the problem into a mean-
field control [3], [4]. The enormous advantage of the mean

field approach is that it allows one to describe the collective
behavior of multiple agents making strategic decisions with a
small number of equations, which significantly reduces the cal-
culation time and computational complexity. Social networks
are no exception in this sense, since the middle-field approach
makes it easy to describe the interaction of individuals in a
particular population where information is distributed, so they
have to make strategic decisions, for example, about involving
in the distribution process.

The mean-field problems were numerically investigated in
the papers [5]–[8] to describe the dynamics and control of
epidemiological and economic processes. Namely, the problem
of minimizing the cost function

J(u, α) =

T∫
1

∫
Ω

F (x, u(x, t), α(x, t)) dxdt+G(u(x, T ))

under constraints on the distribution density of agents u(x, t)
at the state x ∈ Ω at time t that satisfies the Kolmogorov-
Fokker-Planck (KFP) equation

∂u

∂t
−D∆u+ div (u∇pH(x,∇v)) = 0,

u(x, 0) = u0(x),

comes down to solving the Hamilton-Jacobi-Bellman (HJB)
system −∂v

∂t
−D∆v +H(x,∇v) = f(x, u),

v(x, T ) = G(x, u(x, T )).

Here, the function F characterizes the agents’ costs for
choosing a strategy, G characterizes the terminal cost,

H(x, p) = sup
α

[−p · α− L(x, α)]

is the Hamiltonian function that depends on the Lagrangian
L(x, α), α(x, t) is the control function (representative player’s
strategy).
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The finite-difference schemes have been proposed for the
joint solution of systems such as KFP and HJB based on semi-
Lagrangian approaches [9].

This study addresses the problem of both stimulating and
suppressing information dissemination in online social net-
works by employing a mean-field modeling approach. Based
on the mean-field control theory for describing the dynamics of
epidemiology proposed in the research [6], we obtain a system
of the KFP and HJB equations for the problem of information
dissemination in online social networks.

A similar model was considered in [6], where it was used to
simulate the spread of COVID-19 in the Novosibirsk region,
which had a population of 2.7 million people in 2021.

The diffusion-logistic model, which underlies the sys-
tem with the Kolmogorov-Fokker-Planck equation, was vali-
dated [2] based on data from the social network Twitter, which
had 500 million registered users in 2012.

The calculations were performed on a laptop with an Intel
Core i7-11390H processor, 4 cores, a frequency of 3.4 GHz,
and 16 GB of RAM.

The model is fundamental in nature, so it is suitable for
modelling large social networks. Complicating the model
(agent-oriented approach) will necessitate the use of dis-
tributed computing.

II. MEAN-FIELD CONTROL FOR SOCIAL NETWORKS

In this section, we formulate control problems aimed at
either stopping or stimulating the dissemination of informa-
tion. They are expressed in terms of cost functionals and are
governed by partial differential equations of the KFP and HJB
type. The following analysis lays out the mathematical foun-
dation for modeling user behavior and determining optimal
control strategies in the context of information flow within
social networks.

Let x ∈ Ω = [0, 1] be understood as the user’s state,
where 0 means that the user is involved in the information
dissemination process, and 1 means that he is not involved.
We formulate the problem of stopping the dissemination of
information (problem 1)

J1(u1, α1) =

T∫
1

1∫
0

(
d1

u1α
2
1

2
+ d2(x− 1)2u1

)
dxdt (1)

and the problem of stimulating the dissemination of informa-
tion (problem 2)

J2(u2, α2) =

T∫
1

1∫
0

(
d1

u2α
2
2

2
+ d2x

2u2

)
dxdt. (2)

Here, d1 and d2 are scaling coefficients.
The distribution of users of social network ui(x, t) in both

cases satisfies the system with a KFP-type equation
uit + (uiαi)x +

(
ui

Kcap
− 1

)
r(t)ui −Duixx = 0,

ui(x, 1) = u0(x), x ∈ [0, 1],
u1x(0, t)− ui(0, t) = 0, uix(1, t) = 0, t ∈ [1, T ],

(3)

where i = 1 for functional (1) and i = 2 for functional (2).
Here, the third term (the logistic term) describes the dy-

namics of the population under consideration and reflects the
influence of the structure of a particular social network on the
growth of the density of u(x, t). The Robin boundary condition
at x = 0 reflects the fact that information is exchanged, and
the condition at x = 1 means that there is no information flow
across the boundary.

We consider the parameters of the model that correspond
to the data of the news site Digg.com, represented in [2],
where D = 0.01 is the diffusion coefficient, Kcap = 25 is
the constant describing the maximum network bandwidth, and
r(t) = 1.4e−1.5(t−1) + 0.25 is the growth rate of the number
of active users.

To determine the optimal strategies αi(x, t) for the cor-
responding functionals Ji, i = 1, 2, we use the Lagrange
multiplier method [5], which formulates the Lagrangians

Li(ui, αi, vi) = Ji(ui, αi)−
T∫

1

1∫
0

[uit + (uiαi)x +

+

(
ui

Kcap
− 1

)
r(t)ui −Duixx

]
vi dxdt.

Differentiating Li with respect to ui, we obtain systems
with HJB-type equations

vit + αivix +

(
1− 2ui

Kcap

)
r(t)vi +Dvixx =

= −d1
α2
i

2
− d2fi(x),

vi(x, T ) = 0, x ∈ [0, 1],
Dvix(0, t) + (αi(0, t)−D) vi(0, t) = 0,

vix(1, t) = 0, t ∈ [1, T ].

(4)

Here, f1(x) = (x− 1)2 and f2(x) = x2.
And differentiating Li with respect to αi, we obtain the

optimality condition{
d1αi + vix = 0, x ∈ [0, 1], t ∈ [1, T ],
αi(1, t) = 0, t ∈ [1, T ].

(5)

The solutions of the systems (3), (4), (5) provide the nec-
essary conditions for solving the corresponding minimization
problems (1) for i = 1 and (2) for i = 2 and called a mean-
field control problem. The solution of the mean-field control
problem (3)-(5) consists in determination of user’s density
u(x, t), individual strategy v(x, t) and the optimality condition
α(x, t).

III. ARTIFICIAL NEURAL NETWORK

Various approaches using neural networks can be used to
solve partial differential equations. For example, [10] describes
a numerical method for solving partial differential equations
based on a multilayer feedforward neural network. A solver
based on a radial basis function neural network was presented
in the study [11]. And in [12], physics-informed neural net-
works (PINN) were used to model heat transfer. The use of
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neural operators to approximate partial differential equation
solvers was also investigated [13].

PINN demonstrates versatility and better integration of the
physics of the problem, but can be computationally expensive
and sometimes unstable, which can be controlled by choosing
a regularization factor in the loss function, choosing a metric,
and comparing with classical collocation methods [14].

Rather than discretizing the domain and solving for the
function values at grid-points, an artificial neural network
avoids them by parameterizing the function and solving for
the function itself [15]–[18]. By using training paradigms
inspired by generative adversarial networks, it is now possible
to compute optimal control strategies in large and realistic
social network scenarios efficiently. To do this, the neural
networks Nω and Nθ with weights ω and θ are initialized,
and solutions of HJB and KFP are introduced in the form

Φ(x, t) = (T − t+ 1)Nω(x, t),

Γ(y, t) = (T − t+ 1)y + (t− 1)Nθ(y, t),

where y ∼ u0 are samples drawn from the initial distribution.
In this setting, we train Γ(·, t) to produce samples from u(·, t).
We note that Φ and Γ automatically satisfy the terminal (zero
in our functions (1) and (2)) and initial conditions, respectively.
Our strategy for training consists of alternately training Γ (the
population) and Φ (the value function for an individual agent)
close to the GAN approach [19]. Let us omit the index i in
this section.

The training process begins with the following steps:
To train the network Φ (discriminator):
1) Sample batch {(yb, tb)}Bb=1 with batch size B, where

yb ∼ u0, tb ∼ U(1, T ) (uniform distribution).
2) Compute the push-forward states xb = Γ(yb, tb).
3) Minimize the loss function with a regularization term to

penalize deviations from the HJB equation

lΦ =
1

B

B∑
b=1

[
Φ(xb, 1) + Φt(xb, tb) +DΦxx(xb, tb)+

+α(xb, tb)Φx(xb, tb) +

(
1− 2u

Kcap

)
r(tb)Φ(xb, tb)

]
+

+ λ
1

B

B∑
b=1

∥∥∥∥Φt(xb, tb) +DΦxx(xb, tb) + α(xb, tb)Φx(xb, tb)

+

(
1− 2u

Kcap

)
r(tb)Φ(xb, tb)− d1

α2(xb, tb)

2
− d2f(x)

∥∥∥∥
and find the weights ω of the network Φ.

To train the network Γ (generator)
4) Sample batch {(yb, tb)}Bb=1, where yb ∼ u0,

tb ∼ U(1, T ).

5) Minimize the loss function

lΓ =
1

B

B∑
b=1

[
Φt(Γ(yb, tb), tb) +DΦxx(Γ(yb, tb), tb)+

+ α(Γ(yb, tb), tb)Φx(Γ(yb, tb), tb)+

+

(
1− 2u

Kcap

)
r(tb)Φ(Γ(yb, tb), tb)−

−d1
α2(Γ(yb, tb), tb)

2
− d2f(x)

]
and find the weights θ of the network Γ.

And the stopping criterion is the number of iterations
(epochs).

IV. NUMERICAL EXPERIMENTS

The problems (3), (4), (5) were solved by a finite difference
scheme suggested in [9].

The values of the functions ui and vi were calculated on
uniform grids with respect to time tl = lτ , l = 0, . . . , Nt, τ =
(T −1)/Nt and space xj+1/2 = (j+1/2)h, j = −1, . . . , Nx,
h = 1/Nx. A scheme from [6] with an approximation order
of O(τ + h2) was used, where the left boundary conditions
were approximated as follows:

ui;l,−1/2 =
2− h

2 + h
ui;l,1/2,

vi;l,−1/2 =
D/h− (D − αi;l,0)/2

D/h+ (D − αi;l,0)/2
vi;l,1/2.

The values of the function α, unlike the functions ui and
vi, were calculated on a uniform grid over the space xj = jh,
j = 0, . . . , Nx, h = 1/Nx.

In numerical experiments, we assume T = 24, Nx = 30,
Nt = 1500, d1 = 100, d2 = 1. Such values were chosen to
satisfy the limitations of the method [6]

h2 ≤ 8τD and τ |αl,j | ≤ h/4. (6)

And the initial user density function u0(x) = ax3 + bx2 +
cx + d, where a, b, c, and d are determined from the vector
of values (5.8, 1.7, 1.9, 1, 0.95, 0.7) at x = 1, 2, 3, 4, 5, 6 using
spline interpolation approach.

Figure 1 shows graphs of the distribution of users by degree
of involvement ui(x, t) of the model with an equation of
the KFP type (3), cost functions vi(x, t) of models with an
equation of the HJB type (4) and the control functions αi(x, t)
satisfying the optimality condition (5).

We can see that when solving the assigned synthetic prob-
lems, the optimal values of these functions for the correspond-
ing functionals are determined, and the set goals of stopping
and stimulating the dissemination of information are achieved.
Indeed, the first row of Fig. 1 at the final moment of time
t = 24 hours, the distribution density of users u1(x, t) is
concentrated in the vicinity of x = 1, which shows that the
strategy α1(x, t) of limiting the dissemination of information
is effective. In the case of stimulating the dissemination of
information (the second row of Fig. 1), on the contrary, the
distribution density of involved users u2(x, t) is concentrated
in the vicinity of x = 0.
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u1(x, t) v1(x, t) α1(x, t)

u2(x, t) v2(x, t) α2(x, t)

Fig. 1. Functions ui(x, t), vi(x, t) and αi(x, t) of the mean-field models, where i = 1 for functional (1) (suppressing information) and i = 2 for functional (2)
(stimulating information)

V. CONCLUSION AND FUTURE WORK

In this study, we developed and numerically investi-
gated mean-field control models describing both the sup-
pression and stimulation of information dissemination in
online social networks. We demonstrated that deep neu-
ral network algorithms, which approximate solutions to
high-dimensional Kolmogorov-Fokker-Planck and Hamilton-
Jacobi-Bellman equations, are highly promising for overcom-
ing the computational limitations inherent in traditional grid-
based methods. Our approach enables the efficient computa-
tion of optimal strategies for information flow management,
which is of practical importance for digital platform gover-
nance. Optimal strategies for the behavior of synthetic users
involved in the information dissemination process have been
identified for these cases.

Future research will focus on several key directions:

• Application to real-world historical data (Twitter, Face-
book, etc.);

• Focus on automated hyperparameter selection and inte-

grating the developed neural network algorithms with
streaming data for real-time monitoring and dynamic
control in social networks;

• We will explore multipopulation and hierarchical mean-
field models that account for user heterogeneity and
platform-specific features, broadening the practical rel-
evance of our approach.
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