
Approximation Algorithms for Single Machine
Scheduling Problem with Delayed Precedence

Constraints
Natalia Grigoreva

Saint Petersburg State University
Saint Petersburg, Russia

e-mail: n.s.grig@gmail.com

Alexey Didenko
ITMO National Research University

Saint Petersburg, Russia
e-mail: alex.d.t.610@gmail.com

Abstract—This paper presents a new approximation algorithm
for the single machine scheduling problem with release times and
delivery times, which includes additional conditions that require
a certain delay between the completion of one task and the start
of the next (delayed precedence constraints).

A computational experiment has demonstrated that the
proposed algorithm effectively creates schedules, and when
combined with the well-known Jackson algorithm, it can
enhance the quality of the final schedule.

Keywords— Single machine scheduling, deferred precedence
constraints, approximations algorithm.

I. INTRODUCTION

This paper is concerned with a single machine scheduling
problem of minimizing the makespan. The problem relates
to the scheduling problem and has many applications. We
consider a system of jobs U = {u1, u2, . . . , un}. Each job is
characterized by its execution time t(ui), its release time (or
head) r(ui), and its delivery time (or tail) q(ui). Precedence
constructions between jobs are represented by a directed
acyclic task graph G = 〈U,E〉. E is a set of directed arcs, an
arc e = (ui, uj) ∈ E if and only if ui ≺ uj .

The expression ui ≺ uj means that the job uj may be
initiated only after completion of the job ui. If ui ≺ uj , we
call job ui a predecessor of job uj and job uj a successor of
job ui.

Release time r(ui) is the time at which the job is ready
to start processing, and its delivery begins immediately after
processing has been completed.

At most one job can be processed at a time, but all jobs may
be simultaneously delivered. The set of jobs is performed on
a single processor. Job preemption is not allowed.

The schedule defines the start time τ(ui) of each job ui ∈
U . For each arc e = (ui, uj) ∈ E we define delay lij ≥ t(ui)
such as τ(i)+lij ≤ τ(j). This constraint is called the deferred
precedence constraint (DPC).

The makespan of the schedule S is the quantity

Cmax = max{τ(ui) + t(ui) + q(ui)|ui ∈ U}.

The objective is to minimize Cmax, the time by which all jobs
are delivered.

Following the 3-field classification scheme proposed by
Graham et al. [8], the problem under consideration is denoted
by 1|rj , qj , dpc|Cmax.

If lij = t(ui), the problem is equivalent
1|rj , qj , prec|Cmax.

The problem 1|rj , qj , dpc|Cmax is a more accurate repre-
sentation of the problem of planning on a single machine in
a multi -machine system, such as planning on the shop floor
[7], than 1|rj , qj |Cmax.

The problem is a generalization of a known problem for
a single processor 1|ri, qi|Cmax. In this problem, there is
no precedence construction between jobs, and all jobs are
independent. Each job is characterized by its execution time
t(ui), its release time r(ui), and its delivery time q(ui).
This problem has been studied well, and several algorithms
have been developed for constructing approximate solutions.
Lenstra in [13] showed that the problem is NP -hard in the
strong sense.

The first algorithm for constructing an approximate schedule
was the Schrage heuristic, an extended Jackson rule, which is
formulated as follows: each time the processor is released, a
ready job with the maximum delivery time is assigned to it
[19].

The computational complexity of the algorithm is
O(n log n). Kize et al. [12] showed that the algorithm has
a guaranteed accuracy score of 2. Potts [18] proposed an
O(n2 log n) iterated algorithm, Nowicki and Smutnicki [16]
presented a more efficient 3/2 approximation algorithm, which
runs in O(n log n). Hall and Shmoys [11] improved the Potts
algorithm when they applied it to both the original and
reversed problems (in which the release date and delivery
times are reversed). The worst-case performance ratio of the
algorithm is equal 4/3. All the mentioned algorithms use the
list-based greedy Schrage algorithm as a basic heuristic.

The author proposed an approximate algorithm IJR that
allows the processor to stand idle while waiting for higher-
priority job, which runs in O(n log n). In [9], we proved
that the worst-case performance ratio of the IJR algorithm is
equal 11/7. The combination of the two algorithms, the IJR
algorithm and Schrage algorithm, allowed us to improve the

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_60 248

performance ratio to 3/2 [10].
The works of Baker and Su [3], McMahon and Florian [15],

Carlier [4], Grabowski et al. [6], Pan and Shi [17] developed
branch and bound algorithms to solve the problem without
and with precedence constraints using different branching rules
and bounding techniques. The most efficient algorithm is the
algorithm by Carlier, which optimally solves instances with up
to thousands of jobs. This algorithm constructs a full solution
in each node of the search tree. Liu [14] modified the Carlier
algorithm to solve the problem with precedence constraints
very efficiently.

The 1|rj , qj , prec|Cmax is a key component of several more
complex scheduling problems. Problem is useful in solving
flowshop and jobshop scheduling problems [1], [5] and plays
a central role in some real industrial applications [20].

It is impossible to apply the Carlier algorithm to the problem
1|rj , qj , dpc|Cmax with delays. Balas et.al. [2] proposed the
branch and bound algorithm with a new branching scheme.
The article [21] proposed a modification of the largest tail
heuristic (LTH) and an alternative search strategy in the search
tree for exploring the branch and bound method.

In this paper, we propose approximate scheduling algo-
rithms for the deferred precedence constraint problem. The
main idea behind the algorithm is to allow the processor to
remain idle until a higher-priority task becomes available. The
conditions under which it is justified to use an idle processor
are determined.

The article is organized as follows. The adapted Jackson
algorithm for the delay problem is briefly described in Section
2. The third section describes a new algorithm for the delay
problem. The results of the computational experiment are
briefly described in 4 sections.

II. JACKSON’S ALGORITHM

First, we present a modification of the Jackson algorithm for
solving the problem with delays. To find a new release time
for a job u, you need to find the length of the maximum path
in the graph G = 〈U,E〉 from the starting vertex to the job u.
To find a new delivery time, you need to build the maximum
path from the job u to the final vertex.

If ui ≺ uj then we change r(uj) = max{r(uj), r(ui) +
l(i, j)} and q(ui) = max{q(ui), q(uj)+ l(i, j)}. This replace-
ment does not affect the feasibility of any schedule.

We store ready jobs in a queue with priorities Q1; the
priority is the delivery time. Let time be the time when
the processor is released after completing the tasks already
scheduled. At the initial time, we assume time := rmin. A
partial schedule Sk is a sequence of tasks installed on the
processor over k iterations.

The pseudocode of the extended Jackson rule method for
constructing the approximation schedule is shown in the
algorithm 1.

III. ILTF ALGORITHM

In this section, we propose a new algorithm ILTF to
solve the problem with delays. This algorithm is a modifica-
tion of the algorithm proposed by the author in [9], which

Algorithm 1 LTH algorithm
1: time := rmin; k := 1;S0 := ∅, Q1 := ∅.
2: while k ≤ n do
3: We add ready tasks to the queue Q1such as r(i) ≤

time.
4: if Q1 = ∅ then
5: time := min{r(i)|i /∈ Sk−1}
6: end if
7: Selest ready job u such as q(u) = max{q(i)|i ∈ Q1}.
8: we install the task u on the processor Sk = Sk−1 ∪ u
9: set τ(u) := time;

10: time := τ(u) + t(u);
11: recalculate r(j) for all successors j of job u. ; If u ≺ j

then we change r(j) = max{r(j), r(u) + l(u, j)}
12: k := k + 1
13: end while

has a guaranteed accuracy score of 11/7 for the problem
1|rj , qj , dpc|Cmax.

We define the lower bound of the objective function. The
precedence constraints are given by an acyclic graph G(V,E).
Determine the length of arc e = (ui, uj) ∈ E d(e) = lij .
Find a possible idle time of the processor due to delays D =∑

e∈E(d(e) − t(ui)). We add two vertices to the graph: s is
the beginning vertex and t is the ending vertex .

We introduce a set of arcs Es = {esi}. Each arc esi =
(s, ui) connects the initial vertex s with a vertex ui that has no
predecessors (let’s denote a set of such jobs Us). Determine the
length of this arc d(esi) = r(ui) and rmin = min{r(ui)‖ ui ∈
Us}.

We add a set of arcs Et = {eit}. Each arceit = (ui, t)
connects a vertex ui that has no descendants (let’s denote a set
of such jobs Ut) the final vertex t. Determine the length of this
arc d(esi) = t(ui)+q(ui) and define qmin = min{q(ui)‖ ui ∈
Ut}.

We can determine the length of the critical path tcp in this
graph G(V ∪{s, t}, E∪Es∪Et). The length of the critical path
allows us to refine the lower bound of the objective function
LB1 = max{tcp,max{r(ui) + t(ui) + q(ui) | ui ∈ V }}.
LB2 = rmin +

∑n
i=1 t(ui) + qmin. LB = max{LB1, LB2}.

When constructing a critical path, we will get the length of the
maximum path p(ui) from the initial vertex s to the vertex ui.
p(ui) sets the new release time r∗(ui) = max{r(ui), p(ui)}.
To find a new delivery time q(ui) , we need to build the
maximum path from the job ui to the final vertex, the length
w(ui). Then q∗(ui) = max{q(ui), w(ui)}.

Let Sk be the set of jobs that have been scheduled after k
iterations. Algorithm ILTF is a greedy algorithm in the sense
that at each iteration, it adds any ready job to Sk.

The task to be assigned to the processor is selected in three
stages: first, the ready task u with the maximum delivery time
is selected. Then a task u∗ is selected that can be started before
the end of the task u and q(u∗) > LB/2 and q(u∗)− q(u) >
r(u∗)− time. If there is no such task, then we put task u on
the processor.

249

If the job u∗ exists, then we are looking for a job u1 that can
be done during processor downtime from the moment time
before the start of job r(u∗). If the job u1 has been found,
then we assign it to the processor, otherwise, we assign u∗.

Algorithm ILTF generates the schedule in which processor
is kept idle at a time when it could begin processing a job.

Definition 3.1: A job u /∈ Sk is called the ready job at
the level k, if all its predecessors are included in the partial
solution Sk.

Let time be the completion time of the last completed job
in Sk.
Then time := max{τ(u) + t(u) | u ∈ Sk}. Qk - a set of
ready jobs at the level k

The pseudocode of the ILTF algorithm is shown in the
algorithm 2.

A. Combined scheduling algorithm ICAD
1. Build a schedule SLTH using Jackson’s algorithm. The

makespan of the schedule is Cmax(SLTH).
21. Build a schedule SILTF using the ILTH algorithm. The

makespan of the schedule is Cmax(SILTF).
3. Choose the schedule SA with a smaller value of the

objective function:
Cmax(SA) = min{Cmax(SILTH), Cmax(SLTH)}.

IV. COMPUTATIONAL EXPERIMENT

A computational experiment was conducted to compare the
performance of LTH and ILTF algorithms for the problem of
the single processor scheduling with delays. We investigate
instances with precedence constraints and delays. The instance
generation scheme is as follows: for 1 ≤ i < j ≤ n a
precedence constraint i ≺ j is generated when γ < Pij , where
γ is generated from the uniform distribution over the interval
[0,1], and D = 0, 0.1, 0.3, . . . , 0.9.

Pij =
D(1−D)(j−i−1)

1−D(1− (1−D)(j−i−1))
.

Job processing times are generated with discrete uniform
distributions between 1 and 50. Release dates, delivery times,
and delays li,j are generated with discrete uniform distribu-
tions between 1 and Kn, for K = 20.

If li,j < t(i) then li,j := li,j + t(i).
Parameter K controls the range of heads and tails. For each

n and K, we generate 100 instances.
For tests of type A, the number of jobs n was changed from

50 to 5000, and for all tests, the value K = 20 was chosen. The
value of the objective function Cmax was compared with the
lower bound LB. The average relative error R = Cmax/LB
of the solution decreases with increasing n for all algorithms.
The average relative error is 8 percent for the ILTF algorithm,
9 percent for the LTH algorithm and 4 percent for the ICAD
algorithm (for n = 50).

A computational experiment was conducted for various
types of tests based on comparing the total delay time with
the total task completion time. Let

H =

∑n
i=1 t(ui)∑

e∈E(d(e)− t(ui))
.

Algorithm 2 ILTF algorithm
Calculate the new release time r(ui)

2: Calculate the length of the critical path tcp
Calculate new delivery time q(ui)

4: rmin = min{r(u) | u ∈ Us},
qmin = min{q(u) | u ∈ Ut}

6: Define the lower bound LB of the optimal makespan
LB = max{tcp, rmin +

∑n
i=1 t(ui) + qmin}

8: LB = max{LB,max{r(ui) + t(ui) + q(ui) | ui ∈ V }}.
Qk is the set of ready jobs

10: time := rmin; k := 0;S0 := ∅, Q0 := ∅.
if r(ui) = rmin then

12: ui− > Q0

end if
14: The main cycle

while k ≤ n do
16: r := min{r(ui) | ui ∈ Qk}

if r > time then
18: time := r

end if
20: Select the ready job u ∈ Qk, such as

q(u) = max{q(ui) | r(ui) ≤ time}.
Select the ready job u∗, such as
q(u∗) = max{q(ui) | time < r(ui) < time+ t(u)}

22: if q(u∗) > LB/2 & q(u∗) − q(u) > r(u∗) − time
then

Select the ready job u1 such as
q(u1) = max{q(ui) | r(ui) + t(ui) ≤ r(u∗)}.

24: if we find u1 then
select job v = u1.

26: else
v = u∗.

28: end if
else
v = u

30: end if{ Define the start time of job v}
τ(v) := max{time, r(v)};

32: time := τ(v) + t(v);
recalculate r(j) for all successors of job v ;

34: Sk+1 = Sk ∪ v
k := k + 1

36: end while
We construct the approximation schedule S = Sn

38: Cmax(S) = max{τ(ui) + t(ui) + q(ui) | ui ∈ U}.

Examples with one large job u, such as t(u) > 1/2
∑n

i=1 t(ui)
or with two large jobs were tested.

The computational results for one large job, n = 100 and
H ≥ 2 are summarized in Table 1.

The first column of this table contains the number of jobs
n. Columns ILTF, LTH and ICAD contain mean value of
RILTF = Cmax(ILTF)/LB, RLTH = Cmax(LTH)/LB,
and RICAD = Cmax(ISAD)/LB, respectively. Table 1
shows that building two schedules and choosing the best one

250

TABLE I
TYPE B. THE AVERAGE RELATIVE ERROR OF ALGORITHMS.

n K ILTF LTH ICAD
100 10 1.12 1.15 1.07
100 14 1.11 1.14 1.07
100 15 1.04 1.05 1.03
100 16 1.14 1.16 1.09
100 18 1.09 1.11 1.07
100 20 1.16 1.18 1.08
100 22 1.11 1.13 1.06

allows to get a schedule 6-7 percent better.

REFERENCES

[1] C. Artigues and D.Feillet, “A branch and bound method for the
job-shop problem with sequence-dependent setup times”, Annals
of Operations Research, vol. 159, pp. 135—159, 2008

[2] E.Balas, J.K. Lenstra, A. Vazacopoulos, “The one-machine problem
with delayed precedence constraints and its use in job shop schedul-
ing”, Management Sci., vol. 41, no. 1, pp. 94 –109, 1995

[3] K.R Baker,Introduction to Sequencing and Scheduling, John Wiley &
Son, New York, 1974.

[4] J. Carlier, “The one machine sequencing problem”, European Journal
of Operational Research, vol. 11, pp. 42—47, 1982

[5] C. Chandra, Z. Liu, J.He, T. Ruohonen, “A binary branch and bound
algorithm to minimize maximum scheduling cost”, Omega, vol. 42, pp.
9–15, 2014

[6] J. Grabowski, E. Nowicki and S. Zdrzalka, “A block approach for
single-mashine scheduling with release dates and due dates”, Eur. J.
Oper. Res., vol. 26, pp. 278–285, 1986

[7] S. Dauzere-Peres and J-B Lasserre, “A modied shifting bottleneck
procedure for job-shop scheduling”, Internat. J. Production Res., vol.
31, no. 4, pp. 923932, 1993

[8] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan,
“Optimization and approximation in deterministic sequencing and
scheduling: A survey”, Ann. of Disc. Math, vol. 5, no. 10. pp. 287–
326, 1979

[9] N. Grigoreva “An 11/7- approximation algorithm for single-machine
scheduling problem with release and delivery time”, Communications
in Computer and Information Science, vol. 1739, pp. 76-89, 2022

[10] N.S. Grigoreva, “Worst-Case Analysis of an Approximation Algorithm
for Single Machine Scheduling Problem”, Proceedings of the 16th
Conference on Computer Science and Intelligence Systems, vol. 25,
pp. 221-225. (Annals of Computer Science and Information System;
v. 25), 2021.

[11] L.A. Hall and D.B. Shmoys, “Jackson’s rule for single-machine
scheduling: making a good heuristic better”, Mathematics of Opera-
tions Research, vol. 17, no. 1, pp. 22—35, 1992.

[12] H. Kise, T. Ibaraki and H. Mine, “Performance analysis of six approx-
imation algorithms for the one-machine maximum lateness scheduling
problem with ready times”, Journal of the Operations Research Society
of Japan,vol, 22, pp.. 205—224, 1979.

[13] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, “Complexity of
machine scheduling problems”, Ann. of Disc. Math. vol. 1, pp. 343–
362, 1977.

[14] Z. Liu, “Single machine scheduling to minimize maximum lateness
subject to release dates and precedence constraints”, Computers &
Operations Research, vol. 37, pp. 1537—1543, 2010.

[15] G.B. McMahon and N. Florian, “On scheduling with ready times and
due dates to minimize maximum lateness”, Operations Research., vol.
23, no. 3, pp. 475–482, 1975.

[16] E. Nowicki and C. Smutnicki, “An approximation algorithm for a
single-machine scheduling problem with release times and delivery
times”, Discrete Applied Mathematics, vol. 48, pp. 69–79, 1994.

[17] Y. Pan and L. Shi, “Branch and bound algorithm for solving hard
instances of the one-machine sequencing problem”, European Journal
of Operational Research, vol. 168, pp. 1030—1039, 2006.

[18] C.N. Potts, “Analysis of a heuristic for one machine sequencing with
release dates and delivery times”, Operations Research, vol. 28, pp.
1436—1441, 1980.

[19] Schrage L. Optimal Solutions to Resource Constrained Network
Scheduling Problems (unpublished manuscript), 1971.

[20] K. Sourirajan and R. Uzsoy, “Hybrid decomposition heuristics for
solving large-scale scheduling problems in semiconductor wafer fabri-
cation”, J. Sched, vol. 10, pp. 41-65, 2007.

[21] W. Zhang, J. Sauppe and S. Jacobson, “An Improved Branch-
andBound Algorithm for the One-Machine Scheduling Problem with
Delayed Precedence Constraints”, INFORMS Journal on Computing
33, 2020. DOI: https://doi.org/10.1287/ijoc.2020.0988.

251

