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Abstract—This paper provides a new simple method for
computing the real stability radius in the Frobenius norm and
corresponding destabilizing perturbation. The method is based
on Givens rotations and does not require any initial guess.
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I. INTRODUCTION

The matrix A € R™"*"™ is called stable (Routh — Hurwitz
stable) if all its eigenvalues are situated in the open left half
plane of the complex plane. For a stable matrix A, some
perturbation £ € R™*™ may lead to that eigenvalues of A+ E
cross the imaginary axis, i.e., to loss of stability. Given some
norm || - || in R™*™, the smallest perturbation E that makes
A+ FE unstable is called the destabilizing real perturbation.
It is connected with the notion of the distance to instability
(stability radius) under real perturbations that is formally
defined as

Ba(A) = min{|[B|| | n(A+ E) > 0,E € RV (1)

Here, 7n(-) denotes the spectral abscissa of the matrix, i.e.,
the maximal real part of its eigenvalues.

The real stability radius problem is important in engineering
applications where the dynamics matrix A and its perturbations
are typically real. We consider the Frobenius norm that could
be easily calculated and is more applicable to the problems
arising in Control Theory [3]. There are different approaches
to solving the real stability radius problem in the Frobenius
norm and in the 2-norm. The 2-norm variant of the problem
and the application of pseudospectrum to its solution have
been explored intensively ([4], [5], [6], [9], [10]), and the
algorithms are based on solving singular value problem. In [2],
[13], [14] some lower bounds on the real stability radius in
the Frobenius norm were provided. For this case, only a few
works present iterative algorithms ([6], [7], [8], [12], [15]).
All of these approaches are sensitive to the choice of an initial
guess, i.e., the convergence to the true value of the real stability
radius cannot be guaranteed. In addition, it is quite impossible
to evaluate the computational complexity of known algorithms.
It is claimed only that they are quadratically convergent.

In this paper, we propose a new simple iterative method
that does not require any initial guess. We prove that the
method gives us a local minimum. However, all the conducted
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numerical experiments result in the true value of the stability
radius. For matrices of small sizes ([6], [10], [14]), the values
of the real stability radius obtained by the method coincide
with those calculated earlier or correspond to the bounds
established earlier. In every example, we have also found the
corresponding perturbation E and the matrix B = A + E that
has an eigenvalue with zero real part. From experimental data,
one can assume that the number of iterations depends on

a1 . a1j

max —2 and min —Z,

J€{1,3,...;n} Qkj J€{1,3,...,;n} Qkj

a2; . a1j

max —2 and min  —Z,

J€{2,3,...,n} Ay J€{2,3,...,n} Qfj
(ak; # 0, ke {3,4,...,n}).

If for all rows k these maximal and minimal values are of the
same sign and sufficiently close to each other, then the number
of iterations is quite small.

II. PRELIMINARIES

We first recall the structure of the manifold in the matrix
space that bounds the set of stable matrices. Let M =
[mjkwkzl € R™" be an arbitrary matrix and

f(z)=det(zl — M) =2"+a12" ' +...4a, €R" (2)

be its characteristic polynomial. Find the real and imaginary
part of f(x +iy) {z,y} CR):

f(z) = f@+iy) = O(z,9*) + iy¥(z,y?)

where
2(e,Y) = f@)— g @Y+ @Y
U(x,Y) = f(z)— %f(?’)(as)Y + %f@)(a:)Y2 — ...

Calculate the resultant of the polynomials ®(0,Y) and
U(0,Y) in terms of the coefficients of (2):

Ry(an — QAp_2Y + an,4Y2 + ...
Ap—1 — (In_gY + an_5Y2 + .. )

3)

The polynomial f(z) has a root with zero real part iff
either a,, = 0 or K(f) = 0. This results in the following
statement [10].
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Theorem 1: Equations
det M =0 “4)

and
K(f) :RY((I)(OvY)v‘II(Ovy)) =0 )

define implicit manifolds in R"™ that compose the boundary
for the domain of stability, i.e., the domain in the matrix
space R™*"

P={M e R"™"|M is stable}. (6)

Therefore, the distance to instability from a stable matrix
A is computed as the minimum of the distances to the
two algebraic manifolds in R™*™. The Euclidean distance
(Frobenius norm) to the set of singular matrices equals the
minimal singular value oy,i, (A) of the matrix A. The problem
of finding the distance to the manifold (5) is much more
complicated. Here, we consider one possible approach to its
solution.

Remark. Henceforth, we deal solely with the variant of the
problem connected with the distance to the manifold (5). In all
the results below the value Sg(A) is supposed to be achieved in
this manifold and the condition Or(A) < omin(A) is fulfilled.
Examples of Section V fall into this case.

Consider Givens rotation that is a rotation in the plane
spanned by a pair of coordinate axes. A Givens rotation
in the coordinate plane (e;,e;) by an angle a clockwise is
represented by an orthogonal matrix of the form

1 ... 0 0 ... 0
0 ... cosa sine ... O
pij_
0 ... —sina cosae ... O
L 0 ... 0 0 oo 1]

Now consider a matrix A € R™*™ and an orthonormal basis
{e1,ea,...,e,}. Let us make a rotation in the coordinate plane
(e;, e;) by an angle o counterclockwise and consider the new
matrix: A = PJA(P7)7. In this case, only the entries of
matrix A standing in the ith and the jth rows and in the ith
and the jth columns are modified:

@i =a;; COS> Q—a;; Sin a CoS v—a,;; Sin (v COS a+a; sin® Q,
Qj; =a;; SN @ COS Q-+ j; cos? a—a;; sin? a—a;; sin a.cos a,
(;j =@;; COS O SIN v — sin® a+ta;; cos? a—a;; sin o cos a,
ajj=0y; sin® a+aj; sin a cos a+a;; sin o cos a+a;; cos? «,
(=0} COS '—0j, SIN O, 45 =5} SIN A+, COS v,

(k& {i,j}),
Qi =0; COS U—Qjj SIN O, Q) =0}, SIN +agj COs v,

(k& {i,j}),

for all others 7, g we have G,q = arq.

)

III. MAIN RESULT

In this section, we will use some results that were proved
earlier. Here is the lemma of [10].

Lemma 1: Let the nonzero vectors X, Y be orthogonal and
XTAY # —Y TAX. Then for ¢ defined by the relations

XTAX —YTAY
1820 = 57 T
XTAY +YTAX
the vectors

, p€[0,2m), ®)

X' =Xcosp—Ysing, Y = Xsinp+Ycose (9)

satisfy the condition

X'TAX' =Y'TAY' = % (XTAX +YTAY). (10

The following theorem was proved in [11].

Theorem 2: Let A € R"*™ be a stable matrix, F, and
B, = A+ E, be the destabilizing perturbation and the nearest
to A matrix in the manifold (5) corresponingly. There exists an
orthogonal matrix P € R™*"™ such that the matrix PB, P is
of the lower quasi-triangular form while F, is a rank 2 matrix
with a double real eigenvalue \,:

)\* 0 €13 E1ln
E.=PT| 0 X\ eo3 . gan | P.  (11)
@(71,—2)><n
Corollary 1: For the matrix A, we have
= di2 —€13 —€1n
PAP" = | da  —\. —€923 —€an |,
A(nf2)><n

where di2do < 0.
Now let us reformulate the problem of the real stability
radius computation with the aid of Lemma 1 and Theorem 2.
PROBLEM. For a given matrix A € R™*™, find an orthog-
onal matrix P such that the sum

n n
F(P)=aj, + a3, + » i), + Y _ a3
k=3 k=3

of entries of the matrix A = PAPT is minimal.
This minimum is equal to [3g(A)]?, and matrix P allows
us to find the destabilizing perturbation by formula (11).
Remark. It is evident that such orthogonal matrix P is not
unique. Really, Sgr(A) is invariant under any orthogonal trans-
formation of the vector space spanned by {es,e4,...,en}.
To solve the problem stated, we need the following lemma.
Lemma 2:
a—>b

b
acos’a+bsin?a = % +

It is well known that every n-dimensional rotation could be
represented as a composition of two-dimensional rotations in
coordinate planes [1], [16]. In our case, it suffices to consider
rotations in coordinate planes (eg,ex) and (es, er), k > 3.

Hence, we will try to find a sequence of rotations in
coordinate planes that converges to the value of real stability

cos 2av.
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radius. It follows that we have to find the minimum value of
the function F'(P).

Theorem 3: Function F(Pr*) (r € {1,2}, k > 3), treated
as a function of «, has its minimum at o = ., such that

n
2 E ApeQjp — 207k Gy j
e=1,04r

tg2a, =

Z (aiz — ajy) + (afy, — afj)
£=1,0#r
Proof: The proof of the theorem is by direct calculation
of L F(P?*) with the help of Lemma 2.

Corollary 2: The function F(P[*), treated as a function
of a, is (m/2)-periodic. In any interval [y,y + 7/2),vy € R,
this function has a unique maximum and a unique minimum.
The stationary values corresponding to the minimum and the
nearest maximum differ by 7 /4.

To find minimum points, consider the sign of %F(Pﬁk).

The function F(P) could be represented as F(P) =
S1(P) + S2(P) where

S1(P) = @, + @5y, Sa(P) = Zdlk + nglv
k=3 k=3

In Section IV, we consider two types of rotations in coordinate
planes. By rotations in the coordinate plane (e1,ez), we
maximally diminish the sum S; while S remains constant.
In this case, we take into account that the sum aq; + as2 does
not change. By rotations in the planes (eq,ex) and (ez,ey)
(k > 3), we consecutively decrease F'(P) regardless the
sum S7.

The rotations of these two types are repeated in sequence
until F'(P) stops decreasing. Since F' > 0, the obtained
decreasing sequence of the corresponding values F'(P) con-
verges. Its limit gives us the local minimum of F(P). The
limitary orthogonal matrix P can be represented as the product
of the rotational matrices PT*.

HYPOTHESIS. The sequence of values F(P’*) correspond-
ing to minimizing rotations in coordinate planes converges to
the global minimum that is equal to [Br(A4)]2.

Lemma 3: For any rotation in coordinate plane (eq, ex) (k >
3), the values ai2 and ds; do not alter their signs provided
that

ltiga| < min{|ai2/axz|, |az1/azk|} -

For any rotation in coordinate plane (es,ey) (k > 3), the
values aj2 and ag; do not alter their signs provided that

|tg0&‘ < min{|a12/a1k\ s ‘021/ak1|}.

Proof: immediately follows from the formulas (7). 5

Thus, for sufficiently small angles of rotation, the inequality
a12aG21 < 0 is fulfilled due to Corollary 1.

For the values aj2 and ao; to preserve their signs under
processing, we change the rows and columns with numbers ¢
and j (i # j) such that a;ja;; < 0 and the sum a; + a3, is
maximal. Then we interchange the first and the ith rows and
the first and the ith columns; the second and the jth rows and
the second and the jth columns.

IV. ALGORITHM

Input: a stable matrix A € R"*™, ¢ > 0.
Output: real stability radius of A, destabilizing real perturba-
tion.
Procedure 1. Input: matrix A € R™*".
Output: rotation angle

<a11 - a22)
o =arctg | ———= | ;
a2 + a2
and rotation matrix P2 in the plane (ej,ey). A =
P24 (P12)T.
Set A = [1;
Procedure 2. Input: matrix A € R"*".
Output: rotation angle o and rotation matrix P*7 in the plane
(er.e;), ke {1,2};5€{3,4,...,n}.
If £k =1 then r = 2 else r = 1;

n
N=2 E ke — 20rkQrj;

(=100
- N
D= Z (‘ﬁé - aiz) + (a?nk - aij); = D
0=1,05r
If D > 0 then o = 1/2arctgt;
If D <0 then o = 1/2arctgt + 7/2;
If D=0and N >0 then o = w/4;
If D=0and N <0 then o = —7/4;
~ i e T
A=PMA(PNM)
Set A = A;
begin;
L. BR(A) = ,|af + Zai‘ + Za%i;
i=3 i=2
2. Find 4,7 in {1,...,n}, i # j: aj; + a; is maximum.

Interchange the first and ¢th rows and the first and 7th columns.
Interchange the second and jth rows and the second and jth
columns.

Set P =1.

3. Function 1. Set P = P12p.

4. k = 1; For j = 3 to n Procedure 2; set P = PO’ij;
Procedure 1; P = P12P; end for;

5. k= 2; For j = 3 to n Procedure 2; P = P(ij; Function
1; P = P!2P; end for;

n n
6. fr(A) = | af; + Za%i + Zagi;
i=3 i=2

7. If Br(A) — Br(A) < ¢ then goto 8
else set Or(A) = fr(A); goto 4;
endif;

8. end;

V. EXAMPLES

Example 1: For the matrix

0 1 0
A= 0 0 1
-91 =55 -—-13
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with the spectrum A = {—7,3 & 2i} the stability radius ap-
proximation fr ~ 0.45797643428764129 has been achieved
within 35 iterations of the Algorithm.

The corresponding destabilizing perturbation is presented
here with 1076 accuracy

0.043822 0.024321 —0.398275
E.~ | —0.007437 0.070759 —0.208631
—0.002016 0.003454  0.001457

The validity of the result is certified by an application of an
alternative analytical approach presented in [10].
Example 2: For the matrix [6]

—0.4 7 0 0 0 0
-5 —0.4 1 0 0 0

A= 0 1 -1 -2 0 0
- 0 0 4 -1 1 0

0 0 0 1 -5 2

0 0 0 0 0o -5

with spectrum

{—0.382305489688833 + 5.80808592930962i,
—0.936044959337319 4+ 2.821046667318641,

— 5.16329910194769, —5}.
the approximation g ~ 0.51053919404744041444 has been
achieved within 93 iterations of the Algorithm. The corre-
sponding destabilizing perturbation is E, =

0.355464—0.006308 0.061022 0.024588—-0.001662
0.009547 0.342690 0.029446—0.045096—0.006499

—0.000019
0.000051

—0.086570 0.027549—-0.012752—0.009460—0.000085 0.000009

0.019055 0.023281 0.005187—0.001834—0.000534 0.000003
—0.000931 0.003292 0.000106—0.000502—0.000057 5.10"7
—0.000947 0.000405—0.000131—0.000117—0.000003 1.1077

(represented with the 1075 accuracy). The spectrum of the
nearest unstable matrix A + F, is

{£5.8037362929291, —5.16289231052, —4.999518210930,
—0.977039086012178 + 2.824545506730531} .

Note, that corresponding approximation for the stability radius
in the 2-norm, as for 0.3612, is presented in [6].
Example 3: Let

{aj +ib;}5_, = {-143i,-2£7i,
—3 451, —4 +9i, 5+ 10i, —6 4+ 11i, —7 + 151, —8 & 14i} .

Consider the matrix A = QT Apgiag@ € R1*16. Here Q =
1/4Hy6 where Hig € R16%16 is the Hadamard matrix, and
Apdiag is the block-diagonal matrix with 8 blocks

aj b
[ —b; ]
in the main diagonal.

For this matrix, one has Bgr(A) = /2 with the nearest
matrix in the manifold (5) possessing eigenvalues +3i and
twelve other coinciding with those of A. In this example,
application of the Algorithm is subject to an extra correction
due to the existence of several pairs of rows and columns
with identical values for a3; + a3;, namely 171.125. One has
to perform the procedure of the Algorithm for each such a
pair and then to select the minimal value. The approximation
Br ~ 1.4142135623730951455 is achieved within 428 itera-
tions of the Algorithm.

VI. CONCLUSIONS

We present a new iterative method for the calculation of
the real stability radius in Frobenius norm using a sequence of
Givens rotations that decrease the norm of desired perturbation
at every step. The advantage of the method is that, instead
of solving singular value problems and systems of linear
equations, we use only matrix multiplication for special ro-
tation matrices. Moreover, the appropriate initial guess that is
necessary for the up-to-date iterative methods is not required.
Thus, the most complicated problem of almost all iterative
methods is removed. In addition, the algorithm is very simple
to implement. It seems that for large sparse matrices our
approach has significant potential.

Matrix multiplication with computational complexity O(n?)
is a central operation of the presented algorithm. Optimization
of this operation for Givens matrices is the subject of future
research.
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