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Abstract—Accurate modeling of radionuclide migration in
soils is essential for environmental safety and post-accident
remediation. Cesium-137 (137Cs) is of particular concern due to
its ∼30-year half-life and strong sorption to soil constituents. We
develop and assess a hybrid framework that couples numerical
moisture dynamics with Physics-Informed Neural Networks
(PINNs) to simulate 137Cs transport in variably saturated
soils. Water content θ(z, t) is obtained from Richards-type
simulations, whereas contaminant transport is governed by an
advection–diffusion–reaction model with kinetic sorption and
decay. The PINN approximates C(z, t) from inputs (z, t, θ, soil);
derivatives are computed by automatic differentiation and
used to form a PDE residual. Three soil-type encodings
are compared: scalar, one-hot, and trainable embeddings.
Performance is evaluated with structural similarity (SSIM),
root-mean-square error (RMSE), and mean absolute error
(MAE), with a focus on generalization to unseen soils. Explicit
soil encoding substantially improves accuracy and physical
consistency. One-hot encoding achieves the lowest residuals
on seen soils, while embeddings provide the best zero-shot
transfer to unseen soils. Residual maps confirm improved PDE
adherence when soil-aware inputs are included. The encoding
strategy is a key design choice for physics-informed modeling of
heterogeneous porous media. The proposed framework provides
a foundation for soil-aware PINNs and can be extended to
dual-network setups that jointly predict θ(z, t) and C(z, t).

Keywords—PINN, 137Cs, sorption, unsaturated flow, advec-
tion–diffusion–reaction, embeddings, residual maps.

I. INTRODUCTION

Radionuclide migration in soil is driven by the inter-
play of unsaturated flow, sorption–desorption kinetics, and
radioactive decay. Classical numerical solvers of advec-
tion–dispersion–reaction (ADR) equations require detailed pa-
rameterization (retention curves, conductivity, kinetic rates),
which is challenging in heterogeneous soils and costly for long
horizons [1].

Physics-Informed Neural Networks (PINNs) embed govern-
ing PDEs into the learning objective, and can leverage sparse
data while keeping physical consistency [2]. Prior works
focused mainly on water flow and infiltration; there is less
evidence on contaminant transport with sorption and decay
under heterogeneous soils [3], [4].

This paper couples numerical θ(z, t) with a PINN that
predicts liquid-phase C(z, t) conditioned on soil type. We
compare soil-encoding strategies (none, one-hot, embeddings)

and evaluate accuracy, physical fidelity via PDE residuals, and
generalization to unseen soils.

II. METHODOLOGY

A. Governing Equations

The modeling framework is hybrid: the Richards equation
is first solved numerically to obtain the transient water content
θ(z, t) and pore-water velocity v(z, t). These fields are then
used as dynamic inputs to the contaminant transport model.

Moisture dynamics follow the Richards equation:
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where D(θ) is the soil water diffusivity and K(θ) the hydraulic
conductivity, parameterized by the van Genuchten–Mualem
model.

The transport of dissolved cesium-137 is then described by
an advection–diffusion–reaction (ADR) equation with addi-
tional sorption and decay terms:
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with two-site sorption kinetics:

dqf
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= kf (θC − qf ),
dqs
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= ks(θC − qs). (3)

Here, λ is the radioactive decay constant. Boundary condi-
tions are set as C(0, t) = C0 at the surface and ∂C

∂z

∣∣
z=L

= 0 at
the bottom. This coupling ensures that contaminant migration
is consistently driven by the evolving water content and flow
fields [5].

B. Soil II (Black Soil): Physical Setup and Parameters

Soil II represents a medium-textured “black soil” with
balanced infiltration and retention. Moisture fields θ(z, t) and
pore-water velocity v(z, t) are obtained from the Richards
simulation on a 1D column with depth L = 100 cm over a
horizon T = 14400min. These fields drive the ADR transport
in (2). Boundary conditions are C(0, t) = C0 (surface source)
and ∂C/∂z|z=L = 0 (no-flux at depth).
The hydrodynamic dispersion and advection entering (2) are
consistently derived from the Richards solution; no additional
calibration to θ(z, t) is performed.
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C. PINN Formulation

Inputs are (z, t, θ, soil). We compare:

1) Baseline: no soil encoding,
2) One-hot: categorical soil representation,
3) Embeddings: trainable continuous soil vectors.

The loss is

L = Ldata + λphysLPDE, (4)

The loss function combines two components: a data mismatch
term, defined as the mean squared error between predicted and
reference concentrations, and a physics-based term, defined by
the residual of the ADR equation (2). Training is performed
with the Adam optimizer, using mini-batches that sample
across space, time, and soil types to ensure balanced coverage
of the domain.

D. Numerical Setup and Training Details

Richards simulations (1D, z ∈ [0, L]) provide θ(z, t) on a
uniform grid; ADR is solved explicitly with central diffusion
and upwind advection to generate reference C(z, t). PINNs are
trained for 3000 epochs (lr 10−3); Batch size ≈ 5k points per
soil per step. Baseline/embedding models use 3×128 Tanh;
one-hot uses 4×64 ReLU. First experiment predicts logC
(stability/positivity); later variants predict normalized C. SSIM
is the primary metric (structure), complemented by RMSE and
MAE.

III. EXPERIMENTAL RESULTS FOR SOIL II

We evaluated the three PINN configurations (baseline, one-
hot, embedding) on Soil II, which represents a medium-
textured black soil with balanced infiltration and retention
dynamics.

A. Baseline Model (No Soil Encoding)

The baseline PINN, trained without explicit soil input,
produced overly smoothed Cs-137 distributions and failed to
capture the depth-dependent retention dynamics. Breakthrough
curves were delayed and the adsorption phases underrepre-
sented, reflecting the model’s inability to distinguish soil-
specific features.

Fig. 1: Baseline PINN prediction for Soil II

B. One-Hot Encoding

With one-hot encoding, the PINN sharply captured mi-
gration fronts and retention delays. Residual maps showed
uniformly low values, indicating strong agreement with the
governing PDE. This configuration achieved the best accuracy
for Soil II among the tested models.

Fig. 2: One-hot encoded PINN prediction for Soil II

C. Embedding-Based Encoding

The embedding PINN generalized soil behavior through
trainable continuous vectors. For Soil II, it reproduced overall
plume dynamics and concentration gradients with slightly
reduced accuracy compared to the one-hot model. However,
embeddings provide smoother latent representations, making
them suitable for extrapolation to unseen soils.

Fig. 3: Embedding-based PINN prediction for Soil II

D. Physical Consistency (Residual Maps)

Residual maps are computed by substituting Ĉ into (2). For
the one-hot model (Fig. 4), residuals remain low and spatially
uniform; the histogram is sharply peaked near zero, indicating
good compliance with governing dynamics.

E. Temporal Profiles

Depth profiles at fixed times quantify local accuracy. Fig. 5
shows Soil II at t=5000 min; the one-hot model tracks
the migration front and near-surface plateau with low bias,
consistent with Table I.
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(a) Predicted vs. residual

(b) Histogram

Fig. 4: PDE residual analysis for one-hot PINN on Soil II

Fig. 5: Depth profile at t = 5000 min for Soil II (reference
vs. PINN)

On Soil II, the one-hot encoded PINN achieved the highest
fidelity, while embeddings offered competitive results with
the added advantage of generalization. The baseline model
underperformed, confirming the necessity of soil-aware inputs.

F. Training Dynamics (Soil II)

Figure 6 compares training curves for Soil II across the
three PINN configurations. The baseline (no soil input) con-
verges slowly and plateaus at a higher loss. The one-hot
model achieves the fastest and lowest convergence, while the
embedding model reaches an intermediate final loss, reflecting
a small accuracy trade-off for improved transfer to unseen soils
observed elsewhere.

(a) Baseline

(b) One-hot

(c) Embedding

Fig. 6: Training loss on Soil II

TABLE I: Error metrics (RMSE and MAE) by soil type and
time slice

Soil Time (min) RMSE MAE

I 1000 1.7757e-02 4.1091e-03
I 5000 9.6885e-03 5.2479e-03
I 10000 8.3658e-03 5.7258e-03
II 1000 8.7044e-03 3.2473e-03
II 5000 6.0035e-03 3.2291e-03
II 10000 4.5601e-03 3.0623e-03
III 1000 1.7153e-02 4.8378e-03
III 5000 6.7036e-03 4.0735e-03
III 10000 5.5133e-03 4.5499e-03

Summary of Findings

The study demonstrates that the performance of Physics-
Informed Neural Networks (PINNs) in modeling 137Cs trans-
port is strongly dependent on how the soil type is repre-
sented in the input. The baseline configuration, which omits
explicit soil encoding, systematically underestimates retention
effects and produces overly smoothed concentration fronts.
This limitation reflects the model’s inability to capture the soil-
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specific variability of sorption–desorption kinetics and depth-
dependent migration.

The one-hot encoded model substantially mitigates these
issues, enabling the network to reproduce adsorption fronts,
retention delays, and breakthrough curves with much greater
fidelity. By conditioning predictions on categorical soil types,
the model achieves the lowest residuals among the tested
variants. However, this discrete representation restricts interpo-
lation between soils and limits its ability to generalize beyond
those observed during training.

The embedding-based model provides a more continuous
and flexible representation. By mapping soil categories into a
latent vector space, embeddings allow the network to capture
similarities between soils and extend predictions to unseen
domains. In practice, this yields slightly reduced accuracy
on training soils compared to the one-hot variant, but with
superior generalization capacity—a property of particular im-
portance in real-world scenarios where soil information is
sparse or incomplete. This balance between accuracy and
adaptability highlights embeddings as a promising approach
for building scalable, soil-aware PINNs [6].

Nevertheless, embeddings also introduce challenges. Their
effectiveness depends on the diversity and representativeness
of the training set, and the latent space may absorb not
only soil-specific effects but also artifacts from imperfect
inputs (e.g., numerical noise in θ(z, t)). This complicates
interpretability and calls for careful design, validation, and
potentially the integration of additional physical constraints
to regularize the learned representations.

In summary, one-hot encoding ensures the highest fidelity
when soils are well characterized, while embeddings enable
extrapolation to geophysically diverse domains. These findings
suggest that the encoding strategy is not a minor implemen-
tation detail but a fundamental architectural component in
physics-informed modeling of heterogeneous porous media.

IV. CONCLUSION

This work introduced a hybrid modelling framework for
simulating the spatiotemporal transport of 137Cs in variably
saturated soils by combining Physics-Informed Neural Net-
works (PINNs) with physically grounded numerical simula-
tions. Richards equation was solved to generate realistic water
content θ(z, t) and velocity fields, which were coupled to an
advection–diffusion–reaction model with kinetic sorption and
radioactive decay. These physically consistent fields provided
the foundation for training soil-aware PINNs.

The results demonstrate that soil encoding strategies have
a decisive impact on predictive accuracy and generalization.
The baseline model, which lacks soil awareness, fails to
capture heterogeneity and produces biased migration patterns.
One-hot encoding yields the most accurate predictions for
known soils, faithfully reproducing adsorption and retention
behavior. Embedding-based models, while incurring a minor
accuracy trade-off on seen soils, preserve latent soil features
and generalize to unseen domains. This property is particularly

relevant for environmental risk assessment and post-accident
remediation, where complete soil characterization is often
infeasible.

The methodological contribution of this study lies in fram-
ing soil encoding as an architectural choice in PINNs for het-
erogeneous porous media. Beyond its immediate application
to radionuclide transport, the proposed framework establishes
a foundation for soil-aware PINNs that could be extended
to a range of contaminants and hydrogeological conditions.
In practice, the ability to couple sparse data with governing
PDEs offers a scalable path toward high-fidelity, data-driven
contaminant transport models.

Future directions include incorporating uncertainty quan-
tification to provide confidence intervals for environmental
forecasts, exploring transfer learning across contaminants and
soil types to reduce data requirements. Another promising
avenue is the design of coupled or multi-task PINNs in which
one network predicts θ(z, t) while another predicts C(z, t),
both constrained by shared physical laws. Such approaches
would enable robust modeling even in data-limited settings,
bridging the gap between mechanistic simulations and field-
scale prediction.

Overall, this work establishes a methodological and concep-
tual foundation for soil-aware PINNs. By demonstrating how
encoding strategies shape both accuracy and generalization;
they provide guidance for future applications of physics-
informed machine learning in environmental modeling, risk
assessment, and remediation planning.
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