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Abstract—This study applies Sparse Variational Gaussian
Processes (SVGP) for probabilistic forecasting of energy output
from a solar plant and a wind farm with eight turbines.
Trained on two years of hourly SCADA data, the SVGP
model—combining a neural mean function and Kkernel-based
covariance—produces accurate forecasts with confidence
intervals over 24-120 hour horizons. Results confirm its
scalability and precision thanks to evaluation metrics such as
MAE, RMSE, CRPS, and R? across renewable energy types.
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I. INTRODUCTION

Wind and solar energy have become integral to Russia’s
growing sustainable energy infrastructure, with over 25 wind
farms and 10 solar plants added in the past five years.
These developments align with global efforts to reduce carbon
emissions and contribute several gigawatts to the national grid.

For energy providers, accurate forecasting based on SCADA
and meteorological data is essential to ensure stable power
delivery, optimize trading, and meet regulatory requirements.
Open-access web services (e.g., open-meteo.com) supply
weather variables such as wind speed, direction, and solar
radiation, enabling predictive models that match energy supply
to demand [1], [2].

Despite advances, maintaining forecast errors within 5-10%
and producing hourly predictions up to two weeks remains
difficult. Standard models like ARIMA or LSTM perform well
for short-term horizons (3—-6 hours) but degrade over longer
spans [3]. Recent research has shifted toward transformer-
based methods (e.g., Chronos) and probabilistic models that
better handle uncertainty [4], [5], [6]. Sparse Variational
Gaussian Processes (SVGP) offer a scalable and probabilistic
alternative, capable of efficient learning from large SCADA
and weather datasets [7], [8], [9], [10], [11], [12], [13].

However, many existing models target individual wind tur-
bines, whereas energy is managed and traded at the farm level,
where environmental dependencies are collective. This work
focuses on group-based forecasting for wind farms and solar
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power plants, targeting 90-95% accuracy to support real-world
dispatch and energy market needs [14], [15], [16].

II. MATHEMATICAL MODEL

To address overfitting and underfitting in parametric models,
we adopt a non-parametric Bayesian framework where the
function f(z) is modeled as a Gaussian Process (GP):

f(@) ~ GP(m(z), k(z,2")).

Here, m(x) and k(x,2’) denote the mean and kernel func-
tions, respectively:

k(z,2') = El(g(x) — m(2))(g(z") — m(a"))].

The posterior over f given data X is Gaussian:

p(f I X) =N(f |, K),

with observation noise modeled as:

PEL ) =N fro0D)-
SVGP Model

To handle large datasets, we use the Sparse Variational
Gaussian Process (SVGP) model with inducing variables Z
and function values v = f(Z). This reduces complexity from
O(N?3) to O(NM?) [11], [12], [13].

The joint model is:

Pl | X, Z) = / p(f | X, up(u | 2)p(€ | £)df.

The variational objective maximizes the ELBO:
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where k; is the covariance vector of inducing points, and
>* is the correction term.
Predictions are made via:

plylz) = /p(y | w)p(w | X,Y) dw.

Predictive Mean and Variance

For a new input z;, the predictive mean and variance are
[17]:

;) = szKZEIIMHL

o7 (xs) = k| Ky SKyfvki + 575

Covariance Function (RBF Kernel)

We use the RBF kernel:

D
1
k(z,2') = c-exp (—2 Z bi(xqg — l’:i)2> )

d=1

where c is the output variance, and by are inverse squared
lengthscales.

Logit-Normal Transformation

To handle outputs y € (0,1), we apply the logit transfor-

mation:
Yy
:1 _—
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p(f | f) :N(£ | fao-gbsl)'
III. DEFINITION OF THE PROBLEM

Forecasting energy output from renewable sources is com-
plicated by the inherent variability of solar and wind con-
ditions. This work applies the SVGP framework to provide
scalable, probabilistic forecasts for a 10 MW solar power plant
and an 8-turbine wind farm, offering both point predictions
and uncertainty estimates essential for grid stability and oper-
ational planning.

A. Data Preparation

Both datasets used in this study were collected from in-
dustrial renewable energy facilities equipped with SCADA
systems. All data were recorded with an hourly resolution
over a two-year time span. Each dataset includes a distinct
set of input features selected according to the operational
characteristics of the respective energy source — solar panels
or wind turbines.

B. Dataset 1: Solar Power Plant

The first dataset was collected from a 10 MW photovoltaic
power station with SCADA infrastructure, covering the period
from 15 March 2023 to 15 March 2025. It contains six input
features: air temperature (T_AIR), wind speed (V), wind di-
rection (DIRECTION), panel temperature (T_PANELS), hor-
izontal irradiance (INSOLATION_HOR), and total insolation
(INSOLATION). These variables were selected based on do-
main knowledge and prior research in solar forecasting [14].
Figure 1 illustrates the long-term behavior of total insolation.

The target variable is active power output (POWER), ex-
pressed in megawatts (MW). The forecasting task aims at
predicting solar output over a 120-hour horizon (5 days). The
SVGP model was trained using 5% of the data as inducing
inputs, balancing prediction quality with training efficiency.
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Fig. 1. Total insolation over the two-year observation period

C. Dataset 2: Wind Farm with a Group of 8 Wind Turbines

The second dataset covers a wind farm consisting of eight
turbines, with data collected from SCADA systems over two
years (01 January 2022 to 01 January 2024). Unlike single-
turbine forecasting, this setup captures the aggregated output
of the entire group, allowing the SVGP model to learn collec-
tive dynamics driven by shared atmospheric conditions. The
target variable is the total power output in kilowatts (kW), with
a 24-hour forecasting horizon to assess mid-term variability.

Input features include horizontal wind speed (ABSU), wind
direction (V10), air temperature (U100), and rotor frequency
(Vv100). Figure 2 shows wind speed fluctuations, illustrating
the irregular and stochastic nature of wind power generation.

IV. RESULTS

The results of this work aim to contribute to the develop-
ment of scalable and accurate probabilistic forecasting systems
in the energy sector. SVGP-based models provide not only
point predictions but also an estimate of how uncertain those
predictions are. This helps energy planners and operators better
understand possible outcomes and make more informed, risk-
aware decisions.
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Fig. 2. Horizontal wind speed over the observation period

A. Solar Power Plant

To evaluate the SVGP model for long-term solar forecasting,
we used SCADA data from a solar power plant with a
120-hour prediction horizon. The system spans 43 hectares
and contains 41,184 photovoltaic panels grouped into four
electrical cells. The model was trained for 200 epochs, and the
loss curve (Fig. 3) shows stable convergence without signs of
overfitting or underfitting.

Loss over Epochs

—e— Loss

°
8

100 125 150 175 200
Epoch

Fig. 3. Training loss over 200 epochs

1) Daily Forecasting Performance: To evaluate the stability
and robustness of the SVGP model, we performed five sep-
arate 24-hour forecasts within a 120-hour test window. The
corresponding prediction plots are presented in Figure 4 for
the first day, showing predicted values, true observations, and
95% confidence intervals.

Table I summarizes the evaluation metrics for the five-day
period and displays general performance.

2) General Forecasting Performance: Figure 5 illustrates
the predicted solar power output over the 120-hour window,
along with confidence intervals (95%) and true observed
values. The model successfully captures the diurnal cycle of
solar energy production, characterized by distinct peaks during
daylight hours and near-zero output at night. The uncertainty
bands widen around peak production hours, reflecting higher
variability due to weather-related factors such as insolation.
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Fig. 4. 24-hour forecast for March 10, 2025

TABLE I
DAILY FORECASTING METRICS FOR SOLAR OUTPUT (SVGP)

Date CRPS | MAE | RMSE R?
2025-03-10 | 0.023 | 0.031 | 0.055 | 0.967
2025-03-11 | 0.027 | 0.042 | 0.064 | 0.928
2025-03-12 | 0.016 | 0.027 | 0.039 | 0.876
2025-03-13 | 0.018 | 0.029 | 0.042 | 0.886
2025-03-14 | 0.018 | 0.024 | 0.034 | 0.972

B. Wind Farm with a Group of 8 Wind Turbines

The SVGP model was also applied to a 24-hour forecasting
task for a wind farm consisting of eight wind turbines (group-
1). The training was conducted over 200 epochs. Figure 6
presents the model’s output. The prediction closely follows the
actual curve across all 24 hours, with reasonable confidence
intervals. This demonstrates the model’s ability to capture
middle-term wind variability.

To evaluate model performance, we computed RMSE and
MAE for each individual turbine and for the combined forecast
across the entire wind farm. Table II shows that individual
errors remain low and consistent across turbines, with the
overall aggregated RMSE reaching as low as 0.011 and MAE
0.009. These results confirm the effectiveness of SVGP in
providing high-resolution, low-error predictions for wind farm
energy output.

TABLE II
RMSE AND MAE FOR INDIVIDUAL TURBINES AND TOTAL WIND FARM
FOR 8 WIND TURBINES PREDICTION

Turbine RMSE | MAE
Turbine 1 0.024 | 0.018
Turbine 2 0.025 0.022
Turbine 3 0.034 | 0.028
Turbine 4 0.031 0.025
Turbine 5 0.026 | 0.022
Turbine 6 0.018 0.014
Turbine 7 0.018 0.014
Turbine 8 0.017 0.012

Wind farm group-1 0.011 0.009
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All Daily Forecasts with Confidence Intervals
2025-03-10 to 2025-03-14
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Fig. 5. Predictions with 95% confidence intervals for 120-hour solar output
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Fig. 6. 24-hour forecast for wind farm group-1 with uncertainty bounds. Axis
Y: power (kW), axis X: time (hours)

V. DISCUSSION

While the SVGP model demonstrates strong predictive ac-
curacy and robust uncertainty quantification, several directions
remain open for further research. Comparative benchmarking
with other models, such as DeepAR, Temporal Fusion Trans-
formers, Chronos [4], or support vector regression, would help
evaluate trade-offs in accuracy, efficiency, and generalization
on the same SCADA datasets. These models, particularly
transformer-based ones may offer advantages for long-range
forecasting.

Future studies could also focus on hyperparameter tuning,
including the number of inducing points, kernel selection, and
a neural network structure for the mean function. Addition-
ally, incorporating time-aware feature engineering, such as
sine/cosine encodings of temporal cycles (e.g., hour of day,
day of year), could improve performance—especially for solar
datasets with strong seasonal patterns.

VI. CONCLUSION

This study evaluated the performance of the SVGP model
for mid- and long-term energy forecasting using historical
SCADA and weather data. The model was tested on two
datasets: a solar power plant with a 120-hour prediction
horizon and a wind farm of eight turbines with a 24-hour

horizon. In both cases, the SVGP achieved high accuracy, with
RMSE not exceeding 0.03 from the maximum power.

For the solar dataset, five daily forecasts were generated,
each maintaining a high R? (above 87%), with better per-
formance on days with higher insolation. Feature analysis
indicated that insolation-related variables had the strongest
influence. While no features were excluded in this study,
adding more input parameters or extending the dataset could
improve generalization.

Model training under a 5% inducing point configuration
(about 900 records) took less than 10 minutes, highlighting
its efficiency. The use of historical weather data also suggests
future extensions with probabilistic forecasts for enhanced
planning and operational utility.
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