
A Multimodel Framework for the Analysis of
Processes Described Using UML

Katarina Samoylova
Institute of Physics and Mathematics

Perm State University (PSU)
Perm, Russia

e-mail: katarinasamoilova@yandex.ru
ORCID: 0000-0002-6867-076X

Elena Zamyatina
Department of Information Technologies in Business

HSE University
Perm, Russia

e-mail: e_zamyatina@mail.ru
ORCID: 0000-0001-8123-5984

Abstract—UML activity diagrams are widely used for process
representation, but their lack of formal semantics limits rigorous
analysis. This paper presents a multimodel framework that
translates UML activity diagrams into timed Petri net models for
validation and simulation. The approach enables the detection of
structural and behavioral issues such as deadlocks, unreachable
states, and performance bottlenecks. To illustrate the
methodology, we apply it to two optimization algorithms —
Combinatorial Artificial Bee Colony (CABC) and Discrete
Chicken Swarm Optimization (DCSO) — showing how their
UML-based descriptions can be systematically transformed and
analyzed. The proposed framework improves model precision,
supports iterative refinement, and provides a formal basis for
evaluating dynamic, concurrent processes.

Keywords—Petri nets, UML diagram, activity diagram, bio-
inspired algorithm, simulation modeling.

I. INTRODUCTION
Modern systems integrate parallel workflows and

distributed operations, which increases the need for behavioral
validation at the design stage. UML activity diagrams are
widely used for their clarity in representing sequences,
branching, and concurrency, but they lack formal semantics
and provide limited support for time-dependent analysis.
Although some extensions of UML with execution semantics
have been proposed [1], they remain limited in scope and tool
support. To address this gap, we propose translating UML
activity diagrams into Petri nets, a formalism well-suited for
detecting deadlocks, validating properties, and supporting
simulation-based studies.

To demonstrate the applicability of our approach, we use
two representative bio-inspired algorithms — Cooperative
Artificial Bee Colony (CABC) [2] and Discrete Chicken
Swarm Optimization (DCSO) [3]. These algorithms are
frequently applied in optimization scenarios such as the
Traveling Salesman Problem (TSP) [4], where robust and
efficient routing solutions are required. Their relevance is
especially notable in areas like IoT and smart city systems,
where reliable message delivery remains a key challenge. By
choosing algorithms that address the same class of
combinatorial problems, but differ in their degree of maturity
— one being widely established, the other relatively novel —
we are able to evaluate the flexibility and generality of the
proposed multimodel approach.

II. RELATED WORKS

The challenge of executing and validating UML-based
models has attracted increasing attention over the past decade.
In the systematic review by Ciccozzi et al. [1], the authors
analyze 82 studies to classify the dominant approaches to UML
model execution. They observe that translation-based methods
— which convert UML models into executable code — are
more prevalent than interpretative methods that simulate
models directly. However, the review also reveals persistent
limitations in existing approaches, including insufficient
support for model validation, limited integration of temporal
semantics, and a lack of formal consistency checks between
the UML specifications and their executable counterparts.

Several studies have explored alternatives aimed at
overcoming these challenges. In [5], the use of Foundational
UML (fUML) and the Action Language for fUML (Alf) is
examined as a way to define executable semantics. However,
fUML supports only a restricted subset of UML, excluding
essential constructs like time triggers and asynchronous events.
Moreover, while Alf offers textual behavior descriptions, its
integration with graphical diagrams can be cumbersome. To
address this, ESysML is proposed as a broader modeling
language that incorporates time and event handling. Despite its
potential, ESysML remains in the early stages of development
and lacks mature tool support.

In another line of work, Cengarle et al. [6] present a
system-model-based simulation of UML using Haskell-based
modular simulators. Their approach offers greater flexibility
and platform independence, especially for simulating time-
sensitive or resource-dependent behavior. However, it relies on
custom infrastructure, limiting its accessibility.

To address these limitations, many researchers have
proposed translating UML diagrams into formal models. Petri
nets have proven especially effective, offering concurrency
modeling, deadlock detection, and reachability analysis
essential for validating complex systems. Prior studies [7], [8]
demonstrate systematic transformations of UML Sequence and
Activity Diagrams into Queueing and Timed Petri Nets for
performance and scheduling analysis. Extensions such as
colored, nested, and stochastic Petri nets [11-13] further
enhance their expressiveness. Building on this foundation, our
framework uses UML activity diagrams as input and translates
them into timed Petri nets, enabling structural and behavioral
validation while supporting reproducible simulations in
platforms like AnyLogic [14] and NetLogo [15].

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_72 297

mailto:katarinasamoilova@yandex.ru
mailto:e_zamyatina@mail.ru

III. MULTIMODEL APPROACH OVERVIEW
To ensure model correctness and support decision-making

in complex systems, we adopt a multimodel approach [16] and
validation workflow that integrates conceptual, graphical, and
executable representations.

The proposed framework follows a multimodel workflow
that integrates conceptual, graphical, and executable
representations. At the first stage, a conceptual model (M) is
defined. It is then represented as a graphical model (Mx) using
a standard notation such as UML activity diagrams. Finally,
the graphical model is transformed into an executable
simulation model (M𝑌𝑌𝑍𝑍), where Y denotes the chose
simulation platform (e.g., AnyLogic, NetLogo) and Z the
mathematical formalism applied (e.g., Petri nets, queuing
systems, Markov chains).

If risks are identified during the simulation, knowledge is
extracted from a risk ontology regarding how to mitigate the
detected threats [6]. This knowledge is then used to modify the
original model Mx , and the process starts again. The cycle
continues until the simulation experiment no longer reveals
any critical threats.

Figure 1 presents the algorithm for applying the proposed
software framework.

Fig. 1. Multimodel Approach

IV. MODELING BIO-INSPIRED ALGORITHMS WITH TIMED
PETRI NETS

 To illustrate the framework, we selected two optimization
algorithms as case studies: Combinatorial Artificial Bee
Colony (CABC) [2] and Discrete Chicken Swarm
Optimization (DCSO) [3]. Both address the Traveling
Salesman Problem, but differ in maturity, with CABC being
well-established and DCSO relatively new. Their UML
activity diagrams were chosen as input models for translation
into timed Petri nets.
 Figure 2 shows the UML activity diagram of the CABC
algorithm, which serves as a representative example. It
demonstrates the sequential, branching, and iterative

constructs that are formally captured during the transformation
into a Petri net.

Fig. 2. UML diagram of the CABC algorithm

 To demonstrate the application of this approach, we
transformed the UML activity diagram of the Combinatorial
Artificial Bee Colony (CABC) algorithm into a timed Petri net
model. The transformation was carried out in accordance with
the principles outlined in Section III, ensuring structural and
behavioral correspondence between the original diagram and
the resulting Petri net. The simulation model was implemented
in NetLogo, with time delays assigned to transitions to reflect
the algorithm’s iterative nature and phase durations. This
representation enables a detailed examination of the
algorithm's control flow, including its cycles, stopping
conditions, and branching logic.
 The Petri net implemented in NetLogo, resulting from the
transformation of the UML activity diagram of the CABC
algorithm, is shown in the figure below (Fig. 3).
Petri net analysis techniques are generally classified into two
main categories: behavioral and structural methods [17].
Behavioral analysis focuses on the dynamic execution
properties of the net and includes the following:

• Reachability analysis: assesses whether a specific
system state can be reached from the initial
configuration — for instance, verifying whether a
process can be completed successfully.

• Liveness analysis: ensures that the net does not contain
deadlocks, and that all transitions remain potentially
fireable, allowing the process to proceed indefinitely.

• Dead transition detection: identifies transitions that are
never triggered during execution. Recognizing these
inactive elements is useful for uncovering unused
logic or unreachable process paths.

298

Fig. 3. Petri net of the CABC algorithm

The second category encompasses structural analysis methods,
which focus on identifying specific configurations of places
and transitions that influence the overall system behavior. As
noted in [18], key structural components include traps,
siphons, and cycles, each of which plays a critical role in
determining the stability and correctness of the modeled
process (see Fig. 4).

Fig. 4 Trap (A), Siphon (B), Cycle (C)

Let us now consider the resulting timed Petri net model of the
bio-inspired Artificial Bee Colony algorithm. To perform
reachability analysis, it is necessary to define the target state
that the system is expected to reach. In our case, the desired
condition is the activation of the termination criterion, which
indicates that the predefined number of iterations has been
completed. In terms of the timed Petri net, this corresponds to
verifying that a token eventually reaches position p14, which
represents the fulfillment of the stopping condition.
 When analyzing the liveness of the Petri net, it is important
to ensure that the system can execute indefinitely, meaning that
all transitions remain fireable during the process. To verify
this, an experiment was conducted with 10 tokens, and the
statistics on the number of visits to each position were
collected (Fig. 5).

Fig. 5. Token visit statistics for each position in the CABC Petri net

Since all positions in the net are activated during execution, we
can conclude that there are no dead transitions. Additionally,
the experimental results show that all initial tokens reach the

final position, which indicates the absence of traps and siphons,
as these are typically characterized by tokens getting stuck in
specific states. However, in the analyzed net, there is a cyclic
structure formed by the segment t15 → p16 → t16 → p17 →
t17 → p16, as well as a secondary loop starting from p19 →
t20 → p1, both of which constitute cycles within the model
(Fig. 6).

Fig. 6. Cyclic structure in the Petri net model

However, the presence of cycles is expected, as cyclic
behavior is a fundamental characteristic of the algorithm: it
iteratively repeats the search and update of solutions. It is
important to note that the model includes termination criteria
that limit the number of iterations, thereby preventing infinite
execution.

To assess the temporal characteristics of a single iteration
of the CABC algorithm, a series of simulation runs was
performed using the corresponding Petri net model. In each
run, a single token completed a full algorithmic cycle — from
the beginning of the exploration phase to the end of the scout
phase and returned to the initial state. The termination
condition was temporarily disabled to allow uninterrupted
execution. Based on the results of independent runs, the
average duration of one iteration cycle was 18 ticks, which
corresponds to 18 minutes under the assumed time scale (1 tick
= 1 minute) (Fig. 7).

Fig. 7. Duration of one iteration cycle in the CABC

During the analysis of position activation frequency in the
Petri net model of the CABC algorithm, it was observed that
positions 16 and 17 were among the most frequently visited.
These positions correspond to the phase in which the algorithm
returns to the scout stage if the newly found solution is worse
than the previous one. The increased activation frequency of
this segment indicates that the mechanism of solution
evaluation and reassessment is actively utilized during
execution.

After completing the analysis of the CABC algorithm
model, including both the structural characteristics of the Petri
net and the results of simulation experiments, we now proceed
to the second algorithm under consideration — Discrete
Chicken Swarm Optimization (DCSO). The corresponding
Petri net model of this algorithm is shown in the figure below
(see Fig. 8).

299

Fig. 8. Petri net of the DCSO algorithm

As with the previous Petri net, in the DSCO algorithm
model, reachability analysis is performed by identifying the
positions that represent the fulfillment of the termination
criterion. In this case, this is the p27 position.

Continuing the analysis of the DCSO algorithm model, the
Petri net was tested for liveness. A simulation involving 10
tokens was conducted, during which the number of visits to
each position was monitored. The results showed that all
positions were activated at least once, indicating the absence
of dead transitions. Furthermore, none of the tokens became
“stuck” in intermediate positions — each one reached a final
state. This confirms the absence of traps and siphons, and
verifies that the net is live, meaning it is capable of continuous
operation in the presence of input tokens.
 The DCSO Petri net also contains cyclic structures, which
reflect its iterative logic but do not compromise correctness, as
termination criteria are explicitly defined. Simulation showed
that one iteration takes about 19 ticks, and activity is uniformly
distributed across all positions. This balanced cycle confirms
both behavioral correctness and predictable dynamics.
Compared to the branched refinement structure of CABC, the
DCSO model provides stable execution and broad exploration,
making it suitable for discrete combinatorial problems.

V. CONCLUSION
This paper presented a multimodel framework that

translates UML activity diagrams into timed Petri nets for
formal validation and simulation. The approach combines the
intuitive representation of UML with the analytical power of
Petri nets enabling the detection of deadlocks, unreachable
states, and performance bottlenecks. Case studies of CABC
and DCSO demonstrated that both models are structurally
correct and executable, yet differ in architecture: CABC
emphasizes local refinement, while DCSO provides uniform
cyclic exploration. These differences highlight the
framework’s ability to capture algorithm-specific behaviors
and evaluate their suitability for different problem domains.
Overall, the proposed approach enhances model precision,

supports iterative refinement, and can be extended to other
processes and algorithmic paradigms in future work.

REFERENCES
[1] F. Ciccozzi, I. Malavolta and B. Selic, "Execution of UML models: a

systematic review of research and practice," Software & Systems
Modeling, vol. 18, no. 3, pp. 2313–2360, Apr. 2018.

[2] D. Karaboga and B. Gorkemli, "A combinatorial artificial bee colony
algorithm for traveling salesman problem," in Proc. IEEE Congr. Evol.
Comput. (CEC), New Orleans, LA, USA, 2011, pp. 1–7.

[3] Y. Liu, Q. Liu and Z. Tang, "A discrete chicken swarm optimization
for traveling salesman problem," J. Phys.: Conf. Ser., vol. 1978, pp. 1–
7, 2021.

[4] G. Laporte, "The traveling salesman problem: An overview of exact
and approximate algorithms," Eur. J. Oper. Res., vol. 59, no. 2,
pp. 231–247, 1992.

[5] M. Amissah, "A Framework for Executable Systems Modeling," Ph.D.
dissertation, Engineering Management & Systems Engineering, Old
Dominion University, 2018.

[6] M. V. Cengarle, J. Dingel, H. Grönninger and B. Rumpe, "System-
Model-Based Simulation of UML Models," arXiv:1409.6622, 2014.
[Online]. Available: https://arxiv.org/abs/1409.6622.

[7] V.-D. Vu, T.-B. Nguyen and Q.-T. Huynh, "Formal transformation
from UML sequence diagrams to queueing Petri nets," in Proc. Int.
Conf. Adv. Comput. Appl. (ACOMP), 2019, pp. 64–70.

[8] S. Distefano, M. Scarpa and A. Puliafito, "From UML to Petri nets: The
PCM-based methodology," J. Logic Algebraic Program., vol. 80, no.
1, pp. 25–38, 2011.

[9] A. V. Markov and D. O. Romannikov, "Algoritm avtomaticheskoy
translyatsii diagrammy aktivnosti v set' Petri," Vestn. Yuzh.-Ural. Gos.
Univ. Ser. Vychisl. Tekhnol. Sistemy Upravl., no. 4(31), pp. 107–113,
2014. (In Russian)

[10] K. I. Bushmeleva and L. R. Zaripova, "Modelirovanie zhiznennogo
tsikla programmnogo obespecheniya ot sbora trebovaniy do vnedreniya
na osnove primeneniya UML-diagrammy," Vestn. Kibernetiki,
no. 1(28), pp. 23–29, 2019. (In Russian)

[11] R. A. Dyachenko, A. V. Fisher and V. V. Bogdanov, "Modeling of data
collection and transmission systems using colored Petri nets,"
Fundamental Research, no. 11-6, pp. 1122–1126, 2013. (In Russian)

[12] I. A. Lomazova, "Nested Petri Nets for Adaptive Process Modeling,"
in Lecture Notes in Computer Science, vol. 493, pp. 243–254, 2008.

[13] I. Sbeity, L. Brenner and M. Dbouk, "Generating a Performance
Stochastic Model from UML Specifications," arXiv:1202.0414, 2012.
[Online]. Available: https://arxiv.org/abs/1202.0414.

[14] Yu. Karpov, Simulation modeling systems. Introduction to modeling
with AnyLogic 5. Saint Petersburg, Russia: BHV-Petersburg, 2005. (In
Russian)

[15] U. Wilensky, "NetLogo: A simple environment for modeling
complexity," Proc. Int. Conf. Complex Systems, pp. 16–21, 2001.

[16] K. V. Samoilova and E. Zamyatina, "Application of a multi-model
approach for designing a parallel business process," Informatization
and Communication, vol. 15, no. 5, pp. 112–118, 2024. doi:
10.34219/2078-8320-2024-15-5-112-118. (In Russian)

[17] V. B. Marakhovsky, L. Ya. Rozenblyum and A. V. Yakovlev,
Modelirovanie parallelnykh protsessov. Seti Petri. St. Petersburg,
Russia: Professionalnaya literatura, 2014. (In Russian)

[18] I. G. Fedorov, "Metod otobrazheniya ispolnyaemoy modeli biznes-
protsessa v seti Petri," Statistika i Ekonomika, no. 4, 2013. (In Russian)

300

https://arxiv.org/abs/1409.6622
https://arxiv.org/abs/1202.0414

	I. Introduction
	II. Related Works
	III. Multimodel Approach Overview
	IV. Modeling Bio-Inspired Algorithms with Timed Petri Nets
	V. Conclusion
	References

