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Abstract—UML activity diagrams are widely used for process 
representation, but their lack of formal semantics limits rigorous 
analysis. This paper presents a multimodel framework that 
translates UML activity diagrams into timed Petri net models for 
validation and simulation. The approach enables the detection of 
structural and behavioral issues such as deadlocks, unreachable 
states, and performance bottlenecks. To illustrate the 
methodology, we apply it to two optimization algorithms — 
Combinatorial Artificial Bee Colony (CABC) and Discrete 
Chicken Swarm Optimization (DCSO) — showing how their 
UML-based descriptions can be systematically transformed and 
analyzed. The proposed framework improves model precision, 
supports iterative refinement, and provides a formal basis for 
evaluating dynamic, concurrent processes. 

Keywords—Petri nets, UML diagram, activity diagram, bio-
inspired algorithm, simulation modeling. 

I. INTRODUCTION 
Modern systems integrate parallel workflows and 

distributed operations, which increases the need for behavioral 
validation at the design stage. UML activity diagrams are 
widely used for their clarity in representing sequences, 
branching, and concurrency, but they lack formal semantics 
and provide limited support for time-dependent analysis. 
Although some extensions of UML with execution semantics 
have been proposed [1], they remain limited in scope and tool 
support. To address this gap, we propose translating UML 
activity diagrams into Petri nets, a formalism well-suited for 
detecting deadlocks, validating properties, and supporting 
simulation-based studies. 

To demonstrate the applicability of our approach, we use 
two representative bio-inspired algorithms — Cooperative 
Artificial Bee Colony (CABC) [2] and Discrete Chicken 
Swarm Optimization (DCSO) [3]. These algorithms are 
frequently applied in optimization scenarios such as the 
Traveling Salesman Problem (TSP) [4], where robust and 
efficient routing solutions are required. Their relevance is 
especially notable in areas like IoT and smart city systems, 
where reliable message delivery remains a key challenge. By 
choosing algorithms that address the same class of 
combinatorial problems, but differ in their degree of maturity 
— one being widely established, the other relatively novel — 
we are able to evaluate the flexibility and generality of the 
proposed multimodel approach.

II. RELATED WORKS

The challenge of executing and validating UML-based 
models has attracted increasing attention over the past decade. 
In the systematic review by Ciccozzi et al. [1], the authors 
analyze 82 studies to classify the dominant approaches to UML 
model execution. They observe that translation-based methods 
— which convert UML models into executable code — are 
more prevalent than interpretative methods that simulate 
models directly. However, the review also reveals persistent 
limitations in existing approaches, including insufficient 
support for model validation, limited integration of temporal 
semantics, and a lack of formal consistency checks between 
the UML specifications and their executable counterparts. 

Several studies have explored alternatives aimed at 
overcoming these challenges. In [5], the use of Foundational 
UML (fUML) and the Action Language for fUML (Alf) is 
examined as a way to define executable semantics. However, 
fUML supports only a restricted subset of UML, excluding 
essential constructs like time triggers and asynchronous events. 
Moreover, while Alf offers textual behavior descriptions, its 
integration with graphical diagrams can be cumbersome. To 
address this, ESysML is proposed as a broader modeling 
language that incorporates time and event handling. Despite its 
potential, ESysML remains in the early stages of development 
and lacks mature tool support. 

In another line of work, Cengarle et al. [6] present a 
system-model-based simulation of UML using Haskell-based 
modular simulators. Their approach offers greater flexibility 
and platform independence, especially for simulating time-
sensitive or resource-dependent behavior. However, it relies on 
custom infrastructure, limiting its accessibility. 

To address these limitations, many researchers have 
proposed translating UML diagrams into formal models. Petri 
nets have proven especially effective, offering concurrency 
modeling, deadlock detection, and reachability analysis 
essential for validating complex systems. Prior studies [7], [8] 
demonstrate systematic transformations of UML Sequence and 
Activity Diagrams into Queueing and Timed Petri Nets for 
performance and scheduling analysis. Extensions such as 
colored, nested, and stochastic Petri nets [11-13] further 
enhance their expressiveness. Building on this foundation, our 
framework uses UML activity diagrams as input and translates 
them into timed Petri nets, enabling structural and behavioral 
validation while supporting reproducible simulations in 
platforms like AnyLogic [14] and NetLogo [15]. 
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III. MULTIMODEL APPROACH OVERVIEW 
To ensure model correctness and support decision-making 

in complex systems, we adopt a multimodel approach [16] and 
validation workflow that integrates conceptual, graphical, and 
executable representations. 

The proposed framework follows a multimodel workflow 
that integrates conceptual, graphical, and executable 
representations. At the first stage, a conceptual model (M) is 
defined. It is then represented as a graphical model (Mx) using 
a standard notation such as UML activity diagrams. Finally, 
the graphical model is transformed into an executable 
simulation model (M𝑌𝑌𝑍𝑍), where Y denotes the chose  
simulation platform (e.g., AnyLogic, NetLogo) and Z the 
mathematical formalism applied (e.g., Petri nets, queuing 
systems, Markov chains). 

If risks are identified during the simulation, knowledge is 
extracted from a risk ontology regarding how to mitigate the 
detected threats [6]. This knowledge is then used to modify the 
original model Mx , and the process starts again. The cycle 
continues until the simulation experiment no longer reveals 
any critical threats. 

Figure 1 presents the algorithm for applying the proposed 
software framework. 

 
Fig. 1. Multimodel Approach 

IV. MODELING BIO-INSPIRED ALGORITHMS WITH TIMED 
PETRI NETS 

 To illustrate the framework, we selected two optimization 
algorithms as case studies: Combinatorial Artificial Bee 
Colony (CABC) [2] and Discrete Chicken Swarm 
Optimization (DCSO) [3]. Both address the Traveling 
Salesman Problem, but differ in maturity, with CABC being 
well-established and DCSO relatively new. Their UML 
activity diagrams were chosen as input models for translation 
into timed Petri nets. 
 Figure 2 shows the UML activity diagram of the CABC 
algorithm, which serves as a representative example. It 
demonstrates the sequential, branching, and iterative 

constructs that are formally captured during the transformation 
into a Petri net. 

 
Fig. 2. UML diagram of the CABC algorithm 

 To demonstrate the application of this approach, we 
transformed the UML activity diagram of the Combinatorial 
Artificial Bee Colony (CABC) algorithm into a timed Petri net 
model. The transformation was carried out in accordance with 
the principles outlined in Section III, ensuring structural and 
behavioral correspondence between the original diagram and 
the resulting Petri net. The simulation model was implemented 
in NetLogo, with time delays assigned to transitions to reflect 
the algorithm’s iterative nature and phase durations. This 
representation enables a detailed examination of the 
algorithm's control flow, including its cycles, stopping 
conditions, and branching logic. 
 The Petri net implemented in NetLogo, resulting from the 
transformation of the UML activity diagram of the CABC 
algorithm, is shown in the figure below (Fig. 3). 
Petri net analysis techniques are generally classified into two 
main categories: behavioral and structural methods [17]. 
Behavioral analysis focuses on the dynamic execution 
properties of the net and includes the following: 

• Reachability analysis: assesses whether a specific 
system state can be reached from the initial 
configuration — for instance, verifying whether a 
process can be completed successfully. 

• Liveness analysis: ensures that the net does not contain 
deadlocks, and that all transitions remain potentially 
fireable, allowing the process to proceed indefinitely. 

• Dead transition detection: identifies transitions that are 
never triggered during execution. Recognizing these 
inactive elements is useful for uncovering unused 
logic or unreachable process paths. 
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Fig. 3. Petri net of the CABC algorithm 

The second category encompasses structural analysis methods, 
which focus on identifying specific configurations of places 
and transitions that influence the overall system behavior. As 
noted in [18], key structural components include traps, 
siphons, and cycles, each of which plays a critical role in 
determining the stability and correctness of the modeled 
process (see Fig. 4). 

 
Fig. 4 Trap (A), Siphon (B), Cycle (C) 

Let us now consider the resulting timed Petri net model of the 
bio-inspired Artificial Bee Colony algorithm. To perform 
reachability analysis, it is necessary to define the target state 
that the system is expected to reach. In our case, the desired 
condition is the activation of the termination criterion, which 
indicates that the predefined number of iterations has been 
completed. In terms of the timed Petri net, this corresponds to 
verifying that a token eventually reaches position p14, which 
represents the fulfillment of the stopping condition. 
 When analyzing the liveness of the Petri net, it is important 
to ensure that the system can execute indefinitely, meaning that 
all transitions remain fireable during the process. To verify 
this, an experiment was conducted with 10 tokens, and the 
statistics on the number of visits to each position were 
collected (Fig. 5). 

 
Fig. 5. Token visit statistics for each position in the CABC Petri net 

Since all positions in the net are activated during execution, we 
can conclude that there are no dead transitions. Additionally, 
the experimental results show that all initial tokens reach the 

final position, which indicates the absence of traps and siphons, 
as these are typically characterized by tokens getting stuck in 
specific states. However, in the analyzed net, there is a cyclic 
structure formed by the segment t15 → p16 → t16 → p17 → 
t17 → p16, as well as a secondary loop starting from p19 → 
t20 → p1, both of which constitute cycles within the model 
(Fig. 6). 

 
Fig. 6. Cyclic structure in the Petri net model 

However, the presence of cycles is expected, as cyclic 
behavior is a fundamental characteristic of the algorithm: it 
iteratively repeats the search and update of solutions. It is 
important to note that the model includes termination criteria 
that limit the number of iterations, thereby preventing infinite 
execution. 

To assess the temporal characteristics of a single iteration 
of the CABC algorithm, a series of simulation runs was 
performed using the corresponding Petri net model. In each 
run, a single token completed a full algorithmic cycle — from 
the beginning of the exploration phase to the end of the scout 
phase and returned to the initial state. The termination 
condition was temporarily disabled to allow uninterrupted 
execution. Based on the results of independent runs, the 
average duration of one iteration cycle was 18 ticks, which 
corresponds to 18 minutes under the assumed time scale (1 tick 
= 1 minute) (Fig. 7).  

 
Fig. 7. Duration of one iteration cycle in the CABC 

During the analysis of position activation frequency in the 
Petri net model of the CABC algorithm, it was observed that 
positions 16 and 17 were among the most frequently visited. 
These positions correspond to the phase in which the algorithm 
returns to the scout stage if the newly found solution is worse 
than the previous one. The increased activation frequency of 
this segment indicates that the mechanism of solution 
evaluation and reassessment is actively utilized during 
execution. 

After completing the analysis of the CABC algorithm 
model, including both the structural characteristics of the Petri 
net and the results of simulation experiments, we now proceed 
to the second algorithm under consideration — Discrete 
Chicken Swarm Optimization (DCSO). The corresponding 
Petri net model of this algorithm is shown in the figure below 
(see Fig. 8). 
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Fig. 8. Petri net of the DCSO algorithm 

As with the previous Petri net, in the DSCO algorithm 
model, reachability analysis is performed by identifying the 
positions that represent the fulfillment of the termination 
criterion. In this case, this is the p27 position. 

Continuing the analysis of the DCSO algorithm model, the 
Petri net was tested for liveness. A simulation involving 10 
tokens was conducted, during which the number of visits to 
each position was monitored. The results showed that all 
positions were activated at least once, indicating the absence 
of dead transitions. Furthermore, none of the tokens became 
“stuck” in intermediate positions — each one reached a final 
state. This confirms the absence of traps and siphons, and 
verifies that the net is live, meaning it is capable of continuous 
operation in the presence of input tokens. 
 The DCSO Petri net also contains cyclic structures, which 
reflect its iterative logic but do not compromise correctness, as 
termination criteria are explicitly defined. Simulation showed 
that one iteration takes about 19 ticks, and activity is uniformly 
distributed across all positions. This balanced cycle confirms 
both behavioral correctness and predictable dynamics. 
Compared to the branched refinement structure of CABC, the 
DCSO model provides stable execution and broad exploration, 
making it suitable for discrete combinatorial problems. 

V. CONCLUSION 
This paper presented a multimodel framework that 

translates UML activity diagrams into timed Petri nets for 
formal validation and simulation. The approach combines the 
intuitive representation of UML with the analytical power of 
Petri nets enabling the detection of deadlocks, unreachable 
states, and performance bottlenecks. Case studies of CABC 
and DCSO demonstrated that both models are structurally 
correct and executable, yet differ in architecture: CABC 
emphasizes local refinement, while DCSO provides uniform 
cyclic exploration. These differences highlight the 
framework’s ability to capture algorithm-specific behaviors 
and evaluate their suitability for different problem domains. 
Overall, the proposed approach enhances model precision, 

supports iterative refinement, and can be extended to other 
processes and algorithmic paradigms in future work. 
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