
Scaling Armenian ASR: A Semi-Automated Approach
to Building High-Performance Speech Recognition

Systems for Low-Resource Languages

Varuzhan Baghdasaryan
National Polytechnic University of

Armenia
Yerevan, Armenia

e-mail: varuzh2014@gmail.com

Robert Hakobyan
National Polytechnic University of

Armenia
Yerevan, Armenia

e-mail: robhakobyan@gmail.com

Abstract— This paper presents an approach to building
automatic speech recognition (ASR) for Armenian, a low-
resource language. We created a semi-automated pipeline that
collected ~8,000 hours of speech from YouTube and other public
sources, validating ~5,350 hours. Transcriptions were generated
with a base ASR model and refined with a statistical language
model trained on 17M text lines, followed by manual filtering.

We trained two architectures adapted from NVIDIA NeMo:
a lightweight Streaming Citrinet for low-resource settings and a
higher-capacity FastConformer-CTC. Audio preprocessing
included noise cancellation and VAD-based chunking for long
recordings and implicit language detection. A multilingual
pipeline with CNN+RNN-based language ID further enabled
transcription across six languages, including Armenian.

Our system achieved a best WER of 8.56%, contributing both
improved ASR performance and new resources for Armenian
NLP, with a framework applicable to other low-resource
languages.

Keywords— Armenian ASR, speech recognition system,
speech-to-text, NVIDIA NeMo, Citrinet, FastConformer,
Armenian speech corpus, language identification, voice activity
detection, multilingual speech processing, low-resource languages.

I. INTRODUCTION

Armenian automatic speech recognition (ASR) has
received little global attention due to its low-resource status
and lack of large-scale datasets. Our earlier work addressed
this gap by creating the first systematic foundation for
Armenian ASR through dataset development, model
benchmarking, and post-processing solutions [1–5].

We introduced the ArmSpeech corpus (15.7 h) from
diverse Armenian sources, later expanded with the Speech
Corpus of Armenian Q&A Dialogues and Google’s FLEURS,
reaching 34.84 h [4]. Using this dataset, we compared
DeepSpeech, QuartzNet, and Citrinet, showing Citrinet’s
superiority with 19.41% WER without a language model [4].
Motivated by these results, we optimized Citrinet, reducing
WER to 13.4% with a 23-block configuration and achieving
18.2% with a faster 16-block model [4,5].

To support large-scale evaluation and crowdsourced data
acquisition, we launched armspeech.com, which added 21.53

h of speech, expanding the combined dataset to 79.37 h [5].
For downstream usability, we developed an Armenian-
specific punctuation and capitalization system based on
DistilBERT, trained on 11.17M sentences, handling unique
orthographic rules absent in multilingual models [5].

The current work builds on this foundation, scaling data
collection to 8,000 h with a semi-automated pipeline and
extending functionality with multilingual transcription and
implicit language detection. These advances move beyond
monolingual Armenian ASR toward a comprehensive
multilingual solution.

II. DATASETS

We developed a semi-automated pipeline for large-scale
Armenian speech data collection and processing, designed to
handle thousands of hours of audio while ensuring high
quality through automated transcription and manual
validation (Figure 1). The system collected open Armenian
videos from YouTube, standardized audio to 16-bit mono
WAV at 16 kHz, and generated initial transcriptions with our
best-performing Citrinet model (13.4% WER [5]) using GPU-
based batch inference. Predictions were refined with a
statistical language model trained on 17M text lines [3–5],
applying beam search (beam width = 512) for improved
accuracy.

Figure 1. Semi-automated pipeline for large-scale Armenian speech
data collection, transcription, and validation

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_50 205

Validation combined efficiency and quality control:
human annotators reviewed audio–transcription pairs,
marking them as valid or invalid, with minor errors corrected
directly. Five volunteers validated thousands of hours of data
in a few months. Approximately half the dataset was also
transcribed with Google’s Chirp model [6], which favored
grammatically correct outputs, normalizing dialectal forms to
standard Armenian.

Following the established ArmSpeech corpus format [1,
2], the dataset was stored using CSV file format for efficient
data management and compatibility with existing ASR
frameworks. The dataset is divided into subsets following a
standard 70-20-10% split ratio for training, validation, and
testing respectively. The dataset is organized into three main
CSV files: train.csv, which contains information for the
training set and represents 70% of the total data;
validation.csv, used for model evaluation and comprising 20%
of the data; and test.csv, which holds the test set for final
model assessment and accounts for the remaining 10%. Each
CSV file maintains a consistent structure with the following
columns:

• wav_filename: audio clip name (relative path)
• wav_filesize: sample size in bytes
• transcript: punctuated and capitalized transcription
• raw_transcript: normalized transcription without

punctuation
• language: language identifier (e.g., “HY” for

Armenian, “EN” for English)
This format remains compatible with Common Voice [7]

and existing ASR frameworks while extending functionality
with dual transcription formats and multilingual labels.

The pipeline successfully processed and validated 5,350 of
8,000 hours, marking the largest Armenian speech corpus to
date. While the full dataset is not publicly released due to
commercial considerations, trained models are available for
research use. These resources advance Armenian ASR and
provide a scalable framework for other low-resource
languages.

III. METHODS
In this study, we employ two state-of-the-art neural

architectures for Armenian ASR—Streaming Citrinet [8–10]
and FastConformer-CTC [11–13]—both adapted from
NVIDIA’s NeMo toolkit (Figure 2). These were chosen for
their strong multilingual performance and adaptability to low-
resource settings.

Streaming Citrinet serves as our primary real-time model.
The Streaming Citrinet-1024 variant (~140M parameters)
extends QuartzNet with subword encoding and Squeeze-and-
Excitation modules, using CTC decoding for efficient
inference on 16 kHz mono audio. Subword encoding is
particularly beneficial for Armenian’s morphological
richness, enabling better handling of unseen words. In our
earlier work [5], we modified Citrinet with structural and
hyperparameter optimizations to improve accuracy and speed.
Reducing Jasper blocks from 23 to 16 lowered WER slightly
(18.2%) but improved inference speed by 26%, making the
model more suitable for latency-sensitive applications.

FastConformer, in contrast, serves as our high-accuracy
model. By combining Transformer attention with
convolutional layers, it achieves superior performance on

long-form audio such as news broadcasts, making it ideal for
accuracy-critical scenarios.

FastConformer models (both CTC and RNNT variants)
incorporate an optimized Conformer encoder, introducing:

• 8× depthwise-separable convolutional subsampling
with 256 channels

• Reduced convolutional kernel size of 9 within the
Conformer blocks

Additionally, the FastConformer model uses a
CosineAnnealing learning-rate scheduler for training,
replacing the Noam scheduler typically used in Conformer
training.

These changes make the encoder approximately 2.4×
faster than the original, with negligible quality degradation.
Further reducing subsampling channels to 128 boosts the
speedup to 2.7×, though at the cost of some accuracy. With
local attention mechanisms, FastConformer supports
inference on long-form audio—over one hour with 256
channels and over two hours with 128 channels.

Figure 2. Model architectures: Citrinet and Conformer (the

backbone of FastConformer)

The FastConformer-CTC model (≈115M parameters)
was adopted as the second baseline, chosen over the heavier
Hybrid (Transducer+CTC) variant due to its alignment-free
optimization, faster computation, and suitability for the
comparatively small dataset [11–13]. This choice ensured
efficient training, resource economy, and reduced overfitting
risk.

To improve input quality, we implemented a GPU-based
noise cancellation pipeline [14], which reduced background
noise, music, and other artifacts common in broadcast media
while maintaining real-time processing speeds.

A key innovation of our system is a multilingual
processing framework that automatically detects language
boundaries and routes audio segments to the appropriate
monolingual ASR model (Figure 3). Beyond Armenian, the
framework supports English, German, French, Russian,
Italian, and Persian. While pre-trained NeMo models [15]
cover these languages, our design integrates implicit language
identification (LID) with user-selectable options, balancing
GPU efficiency on shared servers.

The pipeline begins with voice activity detection (VAD)
[16], segmenting audio into short chunks (≈ 1 – 3s,
adjustable). Segments are then classified by a lightweight
CNN–RNN LID model [17], which efficiently captures local
spectral-temporal cues and sequential dependencies,
providing fast and accurate predictions. Confidence scores
enable threshold-based handling of ambiguous cases.

206

Consecutive chunks with the same label are merged (up to 15
minutes) for context-rich transcription.

Final segments are routed to language-specific ASR
models, with Armenian speech processed by Streaming
Citrinet or FastConformer, while unknown-language chunks
are handled by multilingual Whisper-small/medium models
[18].

Figure 3. Processing Flow for Multilingual Speech

Recognition

To maximize throughput, language identification and
transcription run on the GPU in adjustable batches (default:
2). Larger batches boost throughput but increase memory
demand and latency. A GPU queuing system monitors
memory, queuing new processes if usage falls below 15%,
preventing overload and enabling concurrent ASR/LID
instances.

This multilingual framework automatically processes
mixed-language audio while preserving language-specific
optimizations. Its modular design supports easy integration of
new models and parameter tuning for different applications.

IV. TRAINING AND RESULTS
Model-specific configurations were largely consistent

across architectures. Convolutional filter sizes were retained,
transitioning from non-streaming Citrinet-256 to streaming
Citrinet-1024. A uniform dropout of 0.05 and learning rate of
0.001 were applied, with training for 150 epochs, data
shuffling, early stopping (patience = 10), and a batch size of
16. Streaming Citrinet used Novograd with weight decay
0.001 and 15% warm-up, while FastConformer-CTC used
AdamW with 0.0001 decay. Data augmentation included
SpecAugment and SpecCutout for Citrinet, and SpecAugment
for FastConformer-CTC [19,20].

Transfer learning from English pre-trained NeMo weights
[15] benefited both the Streaming Citrinet and
FastConformer-CTC models by improving convergence and
simplifying their adaptation to Armenian. However, fully
freezing the encoder impaired performance on Armenian, so
we instead fine-tuned the encoder along with batch-
normalization and Squeeze-and-Excitation layers to adapt
effectively to the target language. Tokenization experiments
comparing WordPiece [21] and BPE [22] showed BPE
performed better for Armenian, handling morphological
variation and OOV words more effectively. We adopted
Google’s SentencePiece BPE [23] with a 1,024-subword
vocabulary trained on ~17M Armenian text lines, ensuring
full token coverage and alignment with the English decoder
for efficient transfer learning.

The final ASR dataset contains ~5,500 hours of 16‑bit
mono WAV at 16 kHz, split 70/20/10% for training,
validation, and testing. Experiments ran on a Vast.ai instance
with four NVIDIA A100 SXM4 GPUs.

The lightweight CNN–RNN language identification
model was trained on ~250 hours of 1–5 s audio clips across
six languages, achieving 92.46% accuracy. Segments with

confidence below 70% were marked as ‘unknown’ to handle
uncertain classifications.

Both models were evaluated on the same dataset, with and
without a statistical language model (LM) (Table 1). In
baseline (acoustic-only) evaluation, FastConformer-CTC
outperformed Streaming Citrinet, achieving a WER of
10.39% vs. 15.61%. With LM integration, Citrinet improved
to 12.44%, while FastConformer reached 8.56%.

Model Size
(MB)

WER WER with
LM

Citrinet
Streaming

461 15.61% 12.44%

FastConformer
CTC

442 10.39% 8.56%

Table 1. Results

The 5.22% gap highlights FastConformer’s advantage in
modeling Armenian’s morphologically rich structure, due to
its mix of convolutional context modeling and transformer
attention. Citrinet, optimized for real-time streaming,
sacrifices bidirectional context for low latency, which limits
accuracy.

Both models benefited from LM rescoring, though gains
were larger for Citrinet (–3.17 points) than FastConformer (–
1.83 points). This suggests Citrinet produces more
recoverable linguistic errors, while FastConformer’s stronger
acoustic modeling leaves less room for correction.

From a deployment perspective, Citrinet Streaming is
better suited for real-time, resource-sensitive applications
such as live captioning or on-device speech recognition, while
FastConformer CTC is preferable for accuracy-critical tasks
like offline transcription or subtitling. Despite similar sizes
(~450 MB), FastConformer consistently yields higher-quality
transcripts, making it the stronger choice when accuracy
outweighs latency.

Building on the results summary, we extended our
evaluation with runtime measurements to assess deployment
feasibility (Figure 4). Tests were run on Ubuntu 20.04 LTS
(Intel i7-9700 @ 3.0 GHz, NVIDIA GTX 1660, 6 GB VRAM)
using a 60-s audio clip, without an external statistical
language model.

Figure 4. Processing Flow for Multilingual Speech

Recognition

These measurements quantify model cold-start (load time)
and inference latency (transcription time), both critical for
deployment. FastConformer-CTC-Large achieved the fastest
load (3.39 s) and strong inference speed (0.19 s). The original
Streaming-Citrinet-1024 was slower—6.52 s to load (≈92%
longer) and 0.23 s to transcribe (≈ 21% slower). Our
modifications improved Citrinet substantially: load time fell
to 4.89 s (≈25% faster than original) and transcription latency
to 0.18 s—≈5% faster than FastConformer and 22% faster
than original Citrinet.

Deployment trade-offs are clear: FastConformer’s
minimal load time and high throughput favor server or batch
use. Original Citrinet’s heavy initialization burden hindered
short-lived or serverless scenarios. The modified Citrinet,
however, reduces cold-start cost while retaining streaming

207

benefits, making it suitable for live-streaming and edge
applications requiring steady low-latency outputs.

Note: absolute timings vary with hardware, memory, I/O,
software, model compilation, and system load.

V. CONCLUSION
This study introduced a practical, semi-automated pipeline

for scaling Armenian ASR that combines large-scale web
collection, multi-stage automatic transcription, lightweight
human validation, and targeted architectural adaptation. From
roughly 8,000 hours of collected audio (5,350 hours validated)
and a 17-million-line text corpus, we trained and evaluated
two production-grade models—Streaming Citrinet
(streaming, low-latency) and FastConformer-CTC (high-
accuracy)—and a compact CNN+RNN LID (92.46%
accuracy) to enable multilingual routing and processing.

Empirically, FastConformer-CTC is the accuracy leader
(WER 10.39% acoustic-only; 8.56% with an external LM),
while the modified Streaming Citrinet offers a useful
latency/throughput tradeoff (15.61% → 12.44% with LM) and
meaningful runtime improvements after optimization.
Practical measurements (model sizes ≈ 442 – 461 MB,
FastConformer cold-start ≈3.4 s and 0.19 s per 60 s clip;
modified Citrinet cold-start ≈ 4.9 s and 0.18 s per clip)
illustrate how architectural choice maps to deployment
regimes: choose FastConformer for batch/offline, Citrinet for
live/edge scenarios where latency and streaming outputs
matter.

Beyond improved WERs, our work demonstrates the value
of transfer learning, BPE tokenization, aggressive audio
preprocessing (VAD and GPU noise reduction), and selective
human validation for low-resource languages. The trained
models offer an immediate resource for Armenian NLP
applications, while the semi-automated methodology remains
broadly applicable to other low-resource languages.

Limitations include partial dataset release for commercial
reasons, dialect normalization effects introduced by mixed-
source transcriptions, and remaining scope to improve LID
robustness and on-device/quantized deployments. Future
work will focus on enlarging validated corpora, refining LID
and dialect handling, releasing more resources to the
community, and exploring model compression and semi-
supervised learning to further lower resource barriers.

In summary, this study closes a practical gap for Armenian
speech technology: it supplies a replicable, scalable pipeline
and competitive models that materially advance ASR quality
for a low-resource language and provide a clear roadmap for
similar efforts elsewhere.

REFERENCES
[1] V. H. Baghdasaryan. "ArmSpeech: Armenian spoken language

corpus", International Journal of Scientific Advances (IJSCIA), vol. 3,
no. 3, pp. 454–459, 2022.

[2] V. H. Baghdasaryan. "Extended ArmSpeech: Armenian Spoken
Language Corpus", International Journal of Scientific Advances
(IJSCIA), vol. 3, no. 4, pp. 573–576, 2022.

[3] V. H. Baghdasaryan. "Armenian Speech Recognition System:
Acoustic and Language Models", International Journal of Scientific
Advances (IJSCIA), vol. 3, no. 5, pp. 719–724, 2022.

[4] V. Baghdasaryan. "Exploring Armenian Speech Recognition: A
Comparative Analysis of ASR Models—Assessing DeepSpeech,
Nvidia NeMo QuartzNet, and Citrinet on Varied Armenian Speech
Corpora", Proceedings of International Conference CSIT, pp. 25–30,
2023.

[5] V. H. Baghdasaryan. "Enhancing Armenian Automatic Speech
Recognition Performance: A Comprehensive Strategy for Speed,
Accuracy, and Linguistic Refinement", International Journal of
Scientific Advances (IJSCIA), vol. 5, no. 2, pp. 281–288, 2024.

[6] Google Cloud. "Chirp 2: Enhanced multilingual accuracy (Cloud
Speech-to-Text V2 documentation)", Google Cloud. Retrieved August
11, 2025. [Online]. Available: https://cloud.google.com/speech-to-
text/v2/docs/chirp_2-model. (Accessed 2025-08-11)

[7] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, ...
G. Weber. "Common voice: A massively-multilingual speech corpus".
arXiv preprint arXiv:1912.06670, 2019.

[8] S. Majumdar, J. Balam, O. Hrinchuk, V. Lavrukhin, V. Noroozi, B.
Ginsburg. "Citrinet: Closing the Gap between Non-Autoregressive and
Autoregressive End-to-End Models for Automatic Speech
Recognition". arXiv preprint arXiv:2104.01721, 2021.

[9] NVIDIA. "Automatic speech recognition (ASR) models — NeMo
documentation: Citrinet". NVIDIA Developer. Retrieved August 3,
2025. [Online]. Available: https://docs.nvidia.com/nemo-
framework/user-guide/latest/nemotoolkit/asr/models.html#citrinet.
(Accessed 2025-08-03)

[10] NVIDIA. "nvidia/stt_en_citrinet_1024_gamma_0_25 [Model]".
Hugging Face. Retrieved August 18, 2025. [Online]. Available:
https://huggingface.co/nvidia/stt_en_citrinet_1024_gamma_0_25.
(Accessed 2025-08-18)

[11] A. Gulati, J. Qin, C. C. Chiu, N. Parmar, Y. Zhang, J. Yu, ... R. Pang.
"Conformer: Convolution-augmented transformer for speech
recognition". arXiv preprint arXiv:2005.08100, 2020.

[12] NVIDIA. "Automatic speech recognition (ASR) models — NeMo
documentation: Fast Conformer". NVIDIA Developer. Retrieved
August 3, 2025. [Online]. Available: https://docs.nvidia.com/nemo-
framework/user-guide/latest/nemotoolkit/asr/models.html#fast-
conformer. (Accessed 2025-08-03)

[13] NVIDIA. "nvidia/stt_en_fastconformer_ctc_large [Model]". Hugging
Face. Retrieved August 18, 2025. [Online]. Available:
https://huggingface.co/nvidia/stt_en_fastconformer_ctc_large.
(Accessed 2025-08-18)

[14] H. Schröter, T. Rosenkranz, A. N. Escalante-B, A. Maier.
"Deepfilternet: Perceptually motivated real-time speech
enhancement". arXiv preprint arXiv:2305.08227, 2023.

[15] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, B. Ginsburg, ...
J. M. Cohen. "Nemo: a toolkit for building ai applications using neural
modules". arXiv preprint arXiv:1909.09577, 2019.

[16] J. Wiseman (host). "py-webrtcvad: Python interface to the WebRTC
Voice Activity Detector [Source code]", GitHub. [Online]. Available:
https://github.com/wiseman/py-webrtcvad.

[17] C. Bartz, T. Herold, H. Yang, C. Meinel. "Language identification
using deep convolutional recurrent neural networks", International
Conference on Neural Information Processing, Cham: Springer
International Publishing, pp. 880–889, October 2017.

[18] R. C. Necula, P. C. Craciun. "Running Automatic Speech Recognition
(ASR) Model in the Context of Real Time Data Streaming
Architecture", Proceedings of the International Conference on
Business Excellence, Sciendo, vol. 19, no. 1, pp. 1282–1293, 2025.

[19] D. S. Park, W. Chan, Y. Zhang, C. C. Chiu, B. Zoph, E. D. Cubuk, Q.
V. Le. "SpecAugment: A Simple Data Augmentation Method for
Automatic Speech Recognition". arXiv preprint arXiv:1904.08779,
2019.

[20] T. DeVries, G. W. Taylor. "Improved Regularization of Convolutional
Neural Networks with Cutout". arXiv preprint arXiv:1708.04552,
2017.

[21] G. Grefenstette. "Tokenization", Syntactic Wordclass Tagging, pp.
117–133. Dordrecht: Springer Netherlands, 1999.

[22] R. Sennrich, B. Haddow, A. Birch. "Neural machine translation of rare
words with subword units". arXiv preprint arXiv:1508.07909, 2015.

[23] T. Kudo, J. Richardson. "SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text
processing". arXiv preprint arXiv:1808.06226, 2018.

208

	I. Introduction
	II. Datasets
	III. Methods
	IV. Training and results
	V. Conclusion
	References

