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Abstract— This paper presents an approach to building 
automatic speech recognition (ASR) for Armenian, a low-
resource language. We created a semi-automated pipeline that 
collected ~8,000 hours of speech from YouTube and other public 
sources, validating ~5,350 hours. Transcriptions were generated 
with a base ASR model and refined with a statistical language 
model trained on 17M text lines, followed by manual filtering. 

We trained two architectures adapted from NVIDIA NeMo: 
a lightweight Streaming Citrinet for low-resource settings and a 
higher-capacity FastConformer-CTC. Audio preprocessing 
included noise cancellation and VAD-based chunking for long 
recordings and implicit language detection. A multilingual 
pipeline with CNN+RNN-based language ID further enabled 
transcription across six languages, including Armenian. 

Our system achieved a best WER of 8.56%, contributing both 
improved ASR performance and new resources for Armenian 
NLP, with a framework applicable to other low-resource 
languages. 

Keywords— Armenian ASR, speech recognition system, 
speech-to-text, NVIDIA NeMo, Citrinet, FastConformer, 
Armenian speech corpus, language identification, voice activity 
detection, multilingual speech processing, low-resource languages. 

I. INTRODUCTION

Armenian automatic speech recognition (ASR) has 
received little global attention due to its low-resource status 
and lack of large-scale datasets. Our earlier work addressed 
this gap by creating the first systematic foundation for 
Armenian ASR through dataset development, model 
benchmarking, and post-processing solutions [1–5]. 

We introduced the ArmSpeech corpus (15.7 h) from 
diverse Armenian sources, later expanded with the Speech 
Corpus of Armenian Q&A Dialogues and Google’s FLEURS, 
reaching 34.84 h [4]. Using this dataset, we compared 
DeepSpeech, QuartzNet, and Citrinet, showing Citrinet’s 
superiority with 19.41% WER without a language model [4]. 
Motivated by these results, we optimized Citrinet, reducing 
WER to 13.4% with a 23-block configuration and achieving 
18.2% with a faster 16-block model [4,5]. 

To support large-scale evaluation and crowdsourced data 
acquisition, we launched armspeech.com, which added 21.53 

h of speech, expanding the combined dataset to 79.37 h [5]. 
For downstream usability, we developed an Armenian-
specific punctuation and capitalization system based on 
DistilBERT, trained on 11.17M sentences, handling unique 
orthographic rules absent in multilingual models [5]. 

The current work builds on this foundation, scaling data 
collection to 8,000 h with a semi-automated pipeline and 
extending functionality with multilingual transcription and 
implicit language detection. These advances move beyond 
monolingual Armenian ASR toward a comprehensive 
multilingual solution. 

II. DATASETS

We developed a semi-automated pipeline for large-scale 
Armenian speech data collection and processing, designed to 
handle thousands of hours of audio while ensuring high 
quality through automated transcription and manual 
validation (Figure 1). The system collected open Armenian 
videos from YouTube, standardized audio to 16-bit mono 
WAV at 16 kHz, and generated initial transcriptions with our 
best-performing Citrinet model (13.4% WER [5]) using GPU-
based batch inference. Predictions were refined with a 
statistical language model trained on 17M text lines [3–5], 
applying beam search (beam width = 512) for improved 
accuracy. 

Figure 1. Semi-automated pipeline for large-scale Armenian speech 
data collection, transcription, and validation 
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Validation combined efficiency and quality control: 
human annotators reviewed audio–transcription pairs, 
marking them as valid or invalid, with minor errors corrected 
directly. Five volunteers validated thousands of hours of data 
in a few months. Approximately half the dataset was also 
transcribed with Google’s Chirp model [6], which favored 
grammatically correct outputs, normalizing dialectal forms to 
standard Armenian. 

Following the established ArmSpeech corpus format [1, 
2], the dataset was stored using CSV file format for efficient 
data management and compatibility with existing ASR 
frameworks. The dataset is divided into subsets following a 
standard 70-20-10% split ratio for training, validation, and 
testing respectively. The dataset is organized into three main 
CSV files: train.csv, which contains information for the 
training set and represents 70% of the total data; 
validation.csv, used for model evaluation and comprising 20% 
of the data; and test.csv, which holds the test set for final 
model assessment and accounts for the remaining 10%. Each 
CSV file maintains a consistent structure with the following 
columns: 

• wav_filename: audio clip name (relative path) 
• wav_filesize: sample size in bytes 
• transcript: punctuated and capitalized transcription 
• raw_transcript: normalized transcription without 

punctuation 
• language: language identifier (e.g., “HY” for 

Armenian, “EN” for English) 
This format remains compatible with Common Voice [7] 

and existing ASR frameworks while extending functionality 
with dual transcription formats and multilingual labels. 

The pipeline successfully processed and validated 5,350 of 
8,000 hours, marking the largest Armenian speech corpus to 
date. While the full dataset is not publicly released due to 
commercial considerations, trained models are available for 
research use. These resources advance Armenian ASR and 
provide a scalable framework for other low-resource 
languages. 

III. METHODS 
In this study, we employ two state-of-the-art neural 

architectures for Armenian ASR—Streaming Citrinet [8–10] 
and FastConformer-CTC [11–13]—both adapted from 
NVIDIA’s NeMo toolkit (Figure 2). These were chosen for 
their strong multilingual performance and adaptability to low-
resource settings. 

Streaming Citrinet serves as our primary real-time model. 
The Streaming Citrinet-1024 variant (~140M parameters) 
extends QuartzNet with subword encoding and Squeeze-and-
Excitation modules, using CTC decoding for efficient 
inference on 16 kHz mono audio. Subword encoding is 
particularly beneficial for Armenian’s morphological 
richness, enabling better handling of unseen words. In our 
earlier work [5], we modified Citrinet with structural and 
hyperparameter optimizations to improve accuracy and speed. 
Reducing Jasper blocks from 23 to 16 lowered WER slightly 
(18.2%) but improved inference speed by 26%, making the 
model more suitable for latency-sensitive applications. 

FastConformer, in contrast, serves as our high-accuracy 
model. By combining Transformer attention with 
convolutional layers, it achieves superior performance on 

long-form audio such as news broadcasts, making it ideal for 
accuracy-critical scenarios. 

FastConformer models (both CTC and RNNT variants) 
incorporate an optimized Conformer encoder, introducing: 

• 8× depthwise-separable convolutional subsampling 
with 256 channels 

• Reduced convolutional kernel size of 9 within the 
Conformer blocks 

Additionally, the FastConformer model uses a 
CosineAnnealing learning-rate scheduler for training, 
replacing the Noam scheduler typically used in Conformer 
training. 

These changes make the encoder approximately 2.4× 
faster than the original, with negligible quality degradation. 
Further reducing subsampling channels to 128 boosts the 
speedup to 2.7×, though at the cost of some accuracy. With 
local attention mechanisms, FastConformer supports 
inference on long-form audio—over one hour with 256 
channels and over two hours with 128 channels. 
 

 
Figure 2. Model architectures: Citrinet and Conformer (the 

backbone of FastConformer) 
 

The FastConformer-CTC model (≈115M parameters) 
was adopted as the second baseline, chosen over the heavier 
Hybrid (Transducer+CTC) variant due to its alignment-free 
optimization, faster computation, and suitability for the 
comparatively small dataset [11–13]. This choice ensured 
efficient training, resource economy, and reduced overfitting 
risk. 

To improve input quality, we implemented a GPU-based 
noise cancellation pipeline [14], which reduced background 
noise, music, and other artifacts common in broadcast media 
while maintaining real-time processing speeds. 

A key innovation of our system is a multilingual 
processing framework that automatically detects language 
boundaries and routes audio segments to the appropriate 
monolingual ASR model (Figure 3). Beyond Armenian, the 
framework supports English, German, French, Russian, 
Italian, and Persian. While pre-trained NeMo models [15] 
cover these languages, our design integrates implicit language 
identification (LID) with user-selectable options, balancing 
GPU efficiency on shared servers. 

The pipeline begins with voice activity detection (VAD) 
[16], segmenting audio into short chunks ( ≈ 1 – 3s, 
adjustable). Segments are then classified by a lightweight 
CNN–RNN LID model [17], which efficiently captures local 
spectral-temporal cues and sequential dependencies, 
providing fast and accurate predictions. Confidence scores 
enable threshold-based handling of ambiguous cases. 
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Consecutive chunks with the same label are merged (up to 15 
minutes) for context-rich transcription. 

Final segments are routed to language-specific ASR 
models, with Armenian speech processed by Streaming 
Citrinet or FastConformer, while unknown-language chunks 
are handled by multilingual Whisper-small/medium models 
[18]. 
 

 
Figure 3. Processing Flow for Multilingual Speech 

Recognition 
 

To maximize throughput, language identification and 
transcription run on the GPU in adjustable batches (default: 
2). Larger batches boost throughput but increase memory 
demand and latency. A GPU queuing system monitors 
memory, queuing new processes if usage falls below 15%, 
preventing overload and enabling concurrent ASR/LID 
instances. 

This multilingual framework automatically processes 
mixed-language audio while preserving language-specific 
optimizations. Its modular design supports easy integration of 
new models and parameter tuning for different applications. 

IV. TRAINING AND RESULTS 
Model-specific configurations were largely consistent 

across architectures. Convolutional filter sizes were retained, 
transitioning from non-streaming Citrinet-256 to streaming 
Citrinet-1024. A uniform dropout of 0.05 and learning rate of 
0.001 were applied, with training for 150 epochs, data 
shuffling, early stopping (patience = 10), and a batch size of 
16. Streaming Citrinet used Novograd with weight decay 
0.001 and 15% warm-up, while FastConformer-CTC used 
AdamW with 0.0001 decay. Data augmentation included 
SpecAugment and SpecCutout for Citrinet, and SpecAugment 
for FastConformer-CTC [19,20]. 

Transfer learning from English pre-trained NeMo weights 
[15] benefited both the Streaming Citrinet and 
FastConformer-CTC models by improving convergence and 
simplifying their adaptation to Armenian. However, fully 
freezing the encoder impaired performance on Armenian, so 
we instead fine-tuned the encoder along with batch-
normalization and Squeeze-and-Excitation layers to adapt 
effectively to the target language. Tokenization experiments 
comparing WordPiece [21] and BPE [22] showed BPE 
performed better for Armenian, handling morphological 
variation and OOV words more effectively. We adopted 
Google’s SentencePiece BPE [23] with a 1,024-subword 
vocabulary trained on ~17M Armenian text lines, ensuring 
full token coverage and alignment with the English decoder 
for efficient transfer learning. 

The final ASR dataset contains ~5,500 hours of 16‑bit 
mono WAV at 16 kHz, split 70/20/10% for training, 
validation, and testing. Experiments ran on a Vast.ai instance 
with four NVIDIA A100 SXM4 GPUs. 

The lightweight CNN–RNN language identification 
model was trained on ~250 hours of 1–5 s audio clips across 
six languages, achieving 92.46% accuracy. Segments with 

confidence below 70% were marked as ‘unknown’ to handle 
uncertain classifications. 

Both models were evaluated on the same dataset, with and 
without a statistical language model (LM) (Table 1). In 
baseline (acoustic-only) evaluation, FastConformer-CTC 
outperformed Streaming Citrinet, achieving a WER of 
10.39% vs. 15.61%. With LM integration, Citrinet improved 
to 12.44%, while FastConformer reached 8.56%. 

 

Model Size 
(MB) 

WER WER with 
LM 

Citrinet 
Streaming 

461 15.61% 12.44% 

FastConformer 
CTC 

442 10.39% 8.56% 

Table 1. Results 
 

The 5.22% gap highlights FastConformer’s advantage in 
modeling Armenian’s morphologically rich structure, due to 
its mix of convolutional context modeling and transformer 
attention. Citrinet, optimized for real-time streaming, 
sacrifices bidirectional context for low latency, which limits 
accuracy. 

Both models benefited from LM rescoring, though gains 
were larger for Citrinet (–3.17 points) than FastConformer (–
1.83 points). This suggests Citrinet produces more 
recoverable linguistic errors, while FastConformer’s stronger 
acoustic modeling leaves less room for correction. 

From a deployment perspective, Citrinet Streaming is 
better suited for real-time, resource-sensitive applications 
such as live captioning or on-device speech recognition, while 
FastConformer CTC is preferable for accuracy-critical tasks 
like offline transcription or subtitling. Despite similar sizes 
(~450 MB), FastConformer consistently yields higher-quality 
transcripts, making it the stronger choice when accuracy 
outweighs latency. 

Building on the results summary, we extended our 
evaluation with runtime measurements to assess deployment 
feasibility (Figure 4). Tests were run on Ubuntu 20.04 LTS 
(Intel i7-9700 @ 3.0 GHz, NVIDIA GTX 1660, 6 GB VRAM) 
using a 60-s audio clip, without an external statistical 
language model. 
 

 
Figure 4. Processing Flow for Multilingual Speech 

Recognition 
 

These measurements quantify model cold-start (load time) 
and inference latency (transcription time), both critical for 
deployment. FastConformer-CTC-Large achieved the fastest 
load (3.39 s) and strong inference speed (0.19 s). The original 
Streaming-Citrinet-1024 was slower—6.52 s to load (≈92% 
longer) and 0.23 s to transcribe ( ≈ 21% slower). Our 
modifications improved Citrinet substantially: load time fell 
to 4.89 s (≈25% faster than original) and transcription latency 
to 0.18 s—≈5% faster than FastConformer and 22% faster 
than original Citrinet. 

Deployment trade-offs are clear: FastConformer’s 
minimal load time and high throughput favor server or batch 
use. Original Citrinet’s heavy initialization burden hindered 
short-lived or serverless scenarios. The modified Citrinet, 
however, reduces cold-start cost while retaining streaming 
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benefits, making it suitable for live-streaming and edge 
applications requiring steady low-latency outputs. 

Note: absolute timings vary with hardware, memory, I/O, 
software, model compilation, and system load. 

V. CONCLUSION 
This study introduced a practical, semi-automated pipeline 

for scaling Armenian ASR that combines large-scale web 
collection, multi-stage automatic transcription, lightweight 
human validation, and targeted architectural adaptation. From 
roughly 8,000 hours of collected audio (5,350 hours validated) 
and a 17-million-line text corpus, we trained and evaluated 
two production-grade models—Streaming Citrinet 
(streaming, low-latency) and FastConformer-CTC (high-
accuracy)—and a compact CNN+RNN LID (92.46% 
accuracy) to enable multilingual routing and processing. 

Empirically, FastConformer-CTC is the accuracy leader 
(WER 10.39% acoustic-only; 8.56% with an external LM), 
while the modified Streaming Citrinet offers a useful 
latency/throughput tradeoff (15.61% → 12.44% with LM) and 
meaningful runtime improvements after optimization. 
Practical measurements (model sizes ≈ 442 – 461 MB, 
FastConformer cold-start ≈3.4 s and 0.19 s per 60 s clip; 
modified Citrinet cold-start ≈ 4.9 s and 0.18 s per clip) 
illustrate how architectural choice maps to deployment 
regimes: choose FastConformer for batch/offline, Citrinet for 
live/edge scenarios where latency and streaming outputs 
matter. 

Beyond improved WERs, our work demonstrates the value 
of transfer learning, BPE tokenization, aggressive audio 
preprocessing (VAD and GPU noise reduction), and selective 
human validation for low-resource languages. The trained 
models offer an immediate resource for Armenian NLP 
applications, while the semi-automated methodology remains 
broadly applicable to other low-resource languages. 

Limitations include partial dataset release for commercial 
reasons, dialect normalization effects introduced by mixed-
source transcriptions, and remaining scope to improve LID 
robustness and on-device/quantized deployments. Future 
work will focus on enlarging validated corpora, refining LID 
and dialect handling, releasing more resources to the 
community, and exploring model compression and semi-
supervised learning to further lower resource barriers. 

In summary, this study closes a practical gap for Armenian 
speech technology: it supplies a replicable, scalable pipeline 
and competitive models that materially advance ASR quality 
for a low-resource language and provide a clear roadmap for 
similar efforts elsewhere. 
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