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Abstract — The paper considers the issues of segmentation of 

aerial photographs obtained by Unnamed Aerial Vehicles to 

identify man-made changes. Neural networks are used for this 

purpose. Based on the orthophotoplan of the oil field area, a 

dataset was formed of about 4,500 tiles measuring 512 × 512 

pixels with 18 classes of man-made zones marked. The images 

were filtered, balanced, and augmented, after which U-Net, 

DeepLabv3+, and SegFormer models were trained on them with 

the training, test, and validation sets divided into 70/15/15%. The 

best modification of U-Net showed an overall accuracy of 94.4% 

and mean Intersection over Union of 79.2%, while Intersection 

over Union values above 80% were obtained for key natural and 

man-made objects. DeepLabv3+ and SegFormer demonstrated 

comparable results (mean Intersection over Union about 74%) 

with better detail for large and rare classes. The proposed 

method ensures high accuracy and efficiency of analysis, which 

makes it promising for environmental monitoring. 

Keywords — Environmental monitoring, man-made changes, 

neural networks, segmentation, orthophotoplan, fully 

convolutional networks, U-net, DeepLabv3+, SegFormer. 

 

I. INTRODUCTION  

Industrial development, particularly in the oil industry, has 

a negative impact on nature. So, there is a need for systematic 

and prompt environmental monitoring to identify man-made 

changes in natural objects. Traditional observation methods 

based on laboratory analysis of soil, water, and air often do 

not allow for prompt recording of the dynamics of object 

disturbances or require significant investment of expert time 

or computing power [1]. 

One effective solution to this problem is the use of 

unmanned aerial vehicles (UAVs), which provide prompt and 

high-precision aerial photography of territories [1, 2]. 

A research group at Perm State University has developed 

a comprehensive methodology for analyzing the effects of oil 

field impacts on natural objects using UAVs, image decoding, 

and field research, as it is reported [1]. However, there is a 

need for manual interpretation of images, which requires 

significant time on the one hand, and the high qualifications 

of specialists (experts) on the other. Due to the above 

limitations, more and more attention is paid to the 

development of tools based on automatic image processing 

methods. 

The article discusses the use of deep learning technologies 

for analyzing aerial photographs. This solution allows us to 

speed up data analysis and reduce dependence on subjective 

factors, which is especially important in the context of 

analyzing large volumes of images. 

So, below we will consider the following neural networks 

commonly used for semantic segmentation and compare the 

efficiency of their application for identifying man-made 

changes in aerial photographs obtained using UAVs: (a) U-

Net; (b) DeepLabv3+; (c) SegFormer.  

The initial data (aerial photographs of a site with signs of 

man-made impact) were provided by a research group of Perm 

State University. 

 

II. AUTOMATED RECOGNITION OF TECHOGENIC SITES 

Deep neural networks are currently a frequently used tool 

for visual information processing. In areas of computer vision 

such as image classification, object detection, and 

segmentation, deep learning methods have demonstrated 

quality comparable to or superior to human capabilities, 

especially on large volumes of data. When applied to aerial 

photographs and remote sensing data, neural networks allow 

for automated interpretation, eliminating the need for manual 

labeling of each new image [2]. For environmental monitoring 

tasks using UAVs, semantic segmentation methods are of 

greatest interest. 

Semantic segmentation is an image classification where 

each pixel is assigned to a specific class [3, 4]. The result is a 

mask (or map) of the same dimensions as the original image, 

where each pixel is labeled, for example, as “technogenic 

object” or “background”. Unlike object detection, where 

bounding boxes are allocated around objects, segmentation 

clearly outlines the shape of objects, which is important for 

assessing the area of technogenic impact and the exact 

boundaries of pollution. 

Neural network architectures, originally developed for 

medical imaging and urban video surveillance, have been 

adapted for satellite imagery. In the case of aerial photographs 

obtained by UAVs, we are dealing with extremely high-

resolution images, where a single photograph may contain 

many small details, unlike satellite images. In this case, the 

neural network must process a large amount of data, which 
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places high demands on the computing power of the computer 

and on the algorithms used. In addition, to train the neural 

network, the data must be labeled (each pixel in the image 

must be assigned to the correct class). 

To solve the problem, we will choose Fully Convolutional 

Networks (FCN) [5,6]. The structure of such networks is 

known as encoder-decoder architecture or “convolutional 

autoencoder”; neural networks with this architecture have 

shown good results in solving semantic segmentation 

problems. Next, we will consider: U-Net [6, 7, 8], 

DeepLabv3+ [6, 7, 9], and SegFormer [6, 7, 10]. 

Let's consider some issues that were solved when working 

with aerial photographs obtained using UAVs. 

A research group of environmental scientists presented an 

orthophoto as input data, which has a size of 10,000 × 10,000 

pixels. For these input data to be processed using a neural 

network, it is necessary to split them into fragments (tiles) of 

512 × 512 pixels. Each fragment is processed separately, and 

then the results are combined (stitched). Recognized objects 

can fall on the border of a fragment, which negatively affects 

the reliability of the results of recognizing man-made areas. In 

this case, the fragment sizes should be such that the object is 

entirely within the fragment. 

In addition, annotating aerial photography is a labor-

intensive process. Semi-automatic methods are often used to 

obtain a training sample: for example, pre-clustering the 

image and then making adjustments manually. In this work, 

the data were labeled manually by an expert based on visual 

analysis in the QGIS geoinformation program, which ensures 

high accuracy, but limits the amount of data for training.  

This must be considered when choosing a model. It is 

advisable to give preference to architectures that can 

effectively learn from small samples. And finally: the quality 

of segmentation is assessed by several metrics - Intersection 

over Union (IoU) (or the Jaccard coefficient) [6] and the 

average intersection of all classes - mean IoU (mIoU) 

The data were obtained at oil fields as a result of aerial 

photography by a Russian-made Supercam S350F UAV and 

represent an orthophotomap. The survey was carried out at an 

altitude of about 400 meters with a resolution of 8.5 

cm/pixel [1]. 

Additionally, vector layers with polygonal markings of 

areas containing signs of mechanogenesis, bitumenization, 

and halogenesis were provided. The images were manually 

marked by environmental specialists using ArcGIS software 

based on the interpretation of aerial photographs and field 

surveys. An example of the original orthophotomap image and 

its markings are shown in Figures 1 and 2. 

 
Fig.1. Fragment of the orthophotoplan of the studied 

deposit 

 
Fig.2. Fragment of the orthophotoplan with markings 

Objects in the labeled images can be assigned to one of 17 

classes: (a) swamps, (b) roads, (c) overgrown fields, etc. Some 

classes are insufficiently represented in the labeled images, so 

it was necessary to augment the data. When preparing the data 

for training neural networks, the following was performed: (a) 

filtering of empty fragments (excluding areas where useful 

information is missing or background prevails); (b) class 

balancing (control of the number of pixels of each class in the 

sample for correct training); (c) dividing the sample into 

training (70%), validation (15%) and test (15%) parts while 

maintaining the proportions of the classes; (d) data 

augmentation — artificial increase in the sample by applying 

image transformations (horizontal and vertical reflections, 

random 90° rotations, changes in brightness and contrast, 

adding noise). An example of the application of augmentation 

is shown in Fig. 3. 

 
Fig. 3. Example of the use of augmentation: the original 

image (left) and the image after vertical reflection, rotation, 

brightness changes and additional noise 

When preparing the data, we considered the fact that the 

data related to different classes are not balanced. For example, 

areas of mechanical damage were encountered much more 

often than traces of bitumenization or halogenesis. To 

compensate for this disproportion, selective augmentation of 

fragments with rare classes was used. 

As a result: (a) the total number of fragments is 4500; (b) 

the fragment sizes are 512×512 pixels; and a balanced number 

of areas of each class. An example of a prepared fragment and 

a fragment with a mask are shown in Fig. 4. 

 
Fig. 4. Example of the prepared image fragment and the 

fragment with a mask 
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The PyTorch library [11] was chosen as the main library 

for creating neural networks. As already mentioned, the 

following neural networks were selected to solve the problem: 

U-Net, DeepLabv3+, and SegFormerTiny. Their training is 

performed according to the following scenario: (a) model 

initialization depending on the selected architecture; (b) 

preparation of datasets and data loaders (DataLoader) with the 

ability to implement class balancing; (c) selection of the loss 

function (classical weighted cross-entropy, where the class 

weights are calculated based on the number of pixels of each 

class, or Focal Loss for more accurate work with rare classes); 

(d) initialization of the optimizer [10] and learning rate 

planner (AdamW [12] and CosineAnnealingLR); (d) support 

for automatic mixed learning (AMP) to speed up training and 

reduce video memory consumption [13]; (e) support for 

exponential smoothing of model weights (EMA) to improve 

the quality of the final results [5, 14]; (g) implementation of 

the Early Stopping procedure in the absence of improvements 

in quality metrics when determining validation [15, 16]. 

To evaluate the quality of the developed models, 

experimental studies were conducted on the generated dataset 

of aerial photographs divided into fragments of 512×512 

pixels. Each model was trained and tested under the same 

conditions. 

Experimental conditions: (a) fragment size 512×512 

pixels; (b) batch size - 8 images for U-Net, DeepLabV3+, 4 

images for SegFormerTiny; (c) number of epochs - 100; (d) 

optimizer: AdamW; (e) scheme for changing the learning rate: 

cosine attenuation (CosineAnnealingLR); (e) loss function - 

weighted cross-entropy. 

Recognition quality was assessed on a validation sample 

(~15% of the entire dataset) without the use of augmentations. 

The following metrics were used to quantitatively assess the 

quality of models used for semantic segmentation: (a) mean 

Intersection over Union (mIoU); — the main metric for 

assessing the quality of segmentation; (b) Per-class IoU — to 

analyze the quality of recognition of objects of different types; 

training time of one epoch — as an indicator of the speed of 

the models. 

All models were trained on the same computing platform 

using GPU acceleration (NVIDIA RTX 4070). 

During the experiments, the Early Stopping 

strategy [15, 16] was used in the absence of growth in the 

mIoU metric over 10 epochs. Let us consider the results of the 

experiments in more detail. 

A. U-Net model results 

The U-Net model demonstrated high overall classification 

accuracy: (a) Overall Accuracy: 94.38%; (b) Mean IoU: 

79.15%. 

Based on the model evaluation results, the following 

conclusions can be made: high IoU values were achieved for 

most key classes: (a) forests (class 6): IoU = 93.42%; (b) 

overgrown fields (class 3): IoU = 91.61%; (c) ponds (class 

14): IoU = 89.63%; power lines (class 9): IoU = 85.50%. The 

best segmentation was observed for large and clearly defined 

objects (forests, overgrown fields). Difficulties arose when 

segmenting classes with low representation in the sample, for 

example: technical objects (class 5): IoU = 0.00% (not a single 

object was recognized), transformed rivers (class 18): IoU = 

57.84%. Thus, U-Net showed excellent results on the main 

classes, but problems arose with rare and small objects. 

B. DeepLabV3+ model results 

DeepLabV3+, built on the modified ResNet-50, 

demonstrated slightly lower performance: (a) Overall 

Accuracy: 93.25%; (b) Mean IoU: 74.24%. Let’s take a closer 

look at the experimental results. The model demonstrated 

good segmentation quality for large objects: (a) forests (class 

6): IoU = 92.73%; (b) overgrown fields (class 3): IoU = 

90.24%. Unfortunately, for some classes, the recognition 

accuracy is low: (a) swamps (class 1): IoU = 51.87%; (b) 

transformed rivers (class 18): IoU = 43.96%; (c) technical 

objects (class 5): IoU = 0.00%. 

It is worth noting that DeepLabV3+ showed less 

robustness on classes with a small number of examples in the 

training set, despite high overall accuracy on large objects. 

C. SegFormer model results 

The SegFormer model demonstrated the following results: 

(a) Overall Accuracy: 87.12%; (b) Mean IoU: 73.57%. Even 

though the model demonstrated the lowest overall accuracy 

among all three models, it demonstrates high quality for 

individual classes: (a) Floodplain meadows (class 8): IoU = 

87.85%; (b) Power transmission lines (class 9): IoU = 90.55%; 

(c) Fields (class 12): IoU = 94.75%; (d) Man-made ponds 

(class 17): IoU = 85.69%. 

At the same time, the model was completely unable to 

correctly identify the background (class 0) IoU = 0.00%. This 

may be due to the lack of an explicit representation of 

"absence of an object" in the logic of the transformer 

architecture or an error in preprocessing. A comparative 

analysis of the models is presented in Table 1. 

Table 1 

Metric U-Net DeepLabV3+ SegFormer 

Overall 

Accuracy 
94.38% 93.25% 87.12% 

Mean IoU 79.15% 74.24% 73.57 % 

IoU 

(class) 

Forests 

(93.4%) 

Forests 

(92.7%) 

Fields 

(94.75%) 

Based on the comparison results, the following 

conclusions can be drawn: (a) U-Net demonstrated better 

values for overall accuracy and average IoU metrics; (b) 

DeepLabV3+ consistently recognized large elements, but 

performed worse with small ones; (c) SegFormer 

demonstrated competitive recognition quality for important 

small ones on important small classes (man-made objects, 

ponds), but did not recognize the background. 

 

III. CONCLUSION 

Thus, a system for automated analysis of aerial 

photographs obtained by UAVs was developed to identify 

signs of man-made transformation of the natural environment. 

Based on the experimental results, it was found that the U-

Net model demonstrated the best results in segmentation 

quality among the tested models, achieving an average mIoU 

metric of about 79%. The DeepLabV3+ model showed good 

results on large objects, but had difficulty segmenting rare and 

small objects. The SegFormerTiny model, despite the lowest 
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overall accuracy (87.1%), showed high accuracy on rare and 

small classes, such as man-made ponds, fields, power lines, 

and meadows in floodplains. 

Further research suggests increasing the amount of data for 

training using GAN [5, 6, 17] (generative adversarial 

networks) to generate new images. 
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