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Abstract—Accurate registration is an important step in
longitudinal medical image studies. However, the scarcity
of ground-truth annotations limits the reproducibility and
benchmarking of the state-of-the-art methods. We introduce
a lightweight, collaborative annotation tool for identifying the
corresponding points in 3D longitudinal scans. Designed for
radiologists to easily use, the tool enables a precise and scalable
evaluation of registration algorithms through ground-truth
landmarks. We demonstrate its application on the brain MRI
longitudinal dataset BraTS-Reg and report benchmark metrics
across standard registration methods.

complex deformations due to pathological changes, especially
in oncology. However, structural changes over time—such as
tumor growth, cavity resorption, and tissue deformation—pose
significant challenges (see Figure 2).

Keywords—Medical Image Analysis, Longitudinal Imaging,
Image Registration, Landmark Annotation, landmarks matching,
Benchmarking.
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I. INTRODUCTION

Longitudinal studies play a vital role in tracking disease
progression, assessing treatment efficacy, and guiding clinical
decisions [1]-[3]. A core challenge in these analyses is image
registration across time points. This step estimates the spatial
correspondence of each point from baseline to follow-up scan
(see Figure 1), thus aligning the anatomical structures despite
local deformations.
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Fig. 2. Examples of two longitudinal MRI scan pairs. The first row shows
a preoperative baseline scan from the BraTS-Reg Challenge dataset [4] with
a visible tumor and surrounding edema, alongside its corresponding follow-
up scan where a resection cavity has appeared in place of the tumor, with
noticeable changes in the edema pattern. The second row shows a post-
operative baseline scan from the St. Olavs University Hospital dataset [2],
acquired after tumor resection, followed by a later scan showing partial cavity
resorption and post-surgical evolution of surrounding tissue.
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Fig. 1. Points displacement between two time-points [4].

Although recent advances have introduced more sophisti-

Accurate registration ensures that the observed changes
reflect actual biological progression rather than misalignment
artifacts, which is critical for quantitative longitudinal analysis.
Traditional registration methods [5] are typically optimized
for healthy organ anatomy and often fail to accommodate

https://doi.org/10.51408/csit2025_54

cated image registration algorithms [6], their evaluation in
clinical settings remains limited. Most validation efforts rely
on visual inspection or the use of synthetic datasets, where
a known deformation is applied to enable quantitative com-
parison with ground truth. However, synthetic data often lack
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realism and scalability, while visual inspection of real data
is inherently subjective. Moreover, the scarcity of publicly
available annotated datasets [4] significantly hinders objective
benchmarking, reproducibility, and supervised training of task-
specific registration models, given the high cost and effort
required for expert annotation.

To address this gap, we propose LandMatch, a lightweight
and collaborative annotation tool specifically designed to gen-
erate ground-truth point correspondences across 3D volumes
acquired at different time-points. This tool allows radiologists
to manually identify anatomically consistent landmarks and
provides an integrated framework to evaluate state-of-the-art
registration algorithms using standardized metrics.

This paper is organized as follows. Section II gives an
overview of the state-of-the-art annotation tools. Section III
explains the motivation and system design. Section IV intro-
duces the proposed annotation tool and its capabilities. Section
V demonstrates its use on the well-known BraTS-Reg dataset,
and finally, section VI provides a discussion and concludes the

paper.
II. RELATED WORK

Several annotation platforms have emerged to facilitate
medical image labeling, focusing primarily on segmenta-
tion tasks. For example, MONAI Label [7] supports semi-
automatic segmentation with model-in-the-loop feedback in
environments like 3D Slicer. Similarly, QuickDraw [8] com-
bines segmentation and visualization tools to accelerate anno-
tation in multimodal MRI datasets. While effective, these tools
are not tailored for longitudinal correspondence annotation.

Classical tools such as ITK-SNAP [9] and 3D Slicer [10]
allow for basic annotation and visualization but lack built-
in support for collaborative workflows or direct support for
temporal correspondence annotation. Recent efforts, such as
SVRDA [11], target slice-to-volume registration and allow
landmark annotation in web environments. The Uncertainty-
Aware Annotation Protocol [12] and BrainMorph [13] demon-
strate that corresponding points can effectively serve as a
foundation for evaluating deformable registration, though these
contributions are algorithmic rather than tool-centric.

To the best of our knowledge, no existing open-source
system is explicitly designed to enable radiologists to annotate
corresponding points in longitudinal 3D scans and evaluate
registration algorithms quantitatively and collaboratively.

III. MOTIVATION AND DESIGN OBJECTIVES

High-quality ground truth annotations for image registration
are vital yet rarely available, especially for longitudinal scans
containing pathologies causing dramatic changes in tissue
appearance (as illustrated earlier in Figure 2). To support
reproducible research and scalable evaluation, we designed our
tool with the following key objectives:

« Ease of Annotation: Intuitive interface for rapid anno-
tation of corresponding points in 3D volumes.

o Collaborative Workflow: Supports loading, merging,
and refining annotations from multiple annotators.

o Low-latency Visualization: Smooth rendering with sup-
port for different modalities (such as T1, T2, Tlc, and
FLAIR in case of MRI scans) and all anatomical planes.

o Customizability: Easily adaptable to a wide range of
medical imaging datasets, including MRI, CT, and PET,
for any anatomical region, with support for up to four
imaging modalities simultaneously.

IV. TooL OVERVIEW

The tool is implemented in Python and can be deployed on
local machines without specialized hardware. It comprises two
main components: the annotation interface and the evaluation
engine.

A. Annotation Interface

The first component of the tool is the annotation interface
(Figure 3), where users provide a CSV file listing patient
identifiers along with the corresponding file paths to the 3D
image volumes acquired at two different timepoints. The tool
displays the paired volumes side-by-side, allowing annotators
to view and mark corresponding landmarks. All annotated
pairs are listed for review and can be exported for further
use.

1) Scan Viewing and Navigation: The interface offers in-
tuitive and flexible navigation through 3D medical images.
Users can load volumetric scans (with the well-known NIFTI
Format) of two time-points simultaneously and explore them
in a synchronized and non-synchronized way. It also offers
synchronized orthogonal views (axial, sagittal, and coronal),
each dynamically linked via a central crosshair. Interacting
with the crosshair in one plane automatically updates the
corresponding slices in the other two, ensuring that all views
remain centered on the same spatial location. This coordinated
navigation enables efficient exploration of complex anatomical
structures.

The tool provides flexible visualization capabilities tailored
to multi-modal imaging. Users can explore anatomical cor-
respondence across modalities using a synchronized layout,
where identical slice positions are displayed for each modality.
To enhance interpretability, pre-existing segmentation masks
can be overlaid on the scans with customizable transparency.

2) Manual landmarks annotation: Landmarks annotation
for registration is represented as matching point pairs defined
within two 3D image volumes acquired at two different time-
points. The user begins by selecting a point of anatomical
interest in the first volume (timepoint 1), which is recorded
as the source coordinate. The corresponding location is then
selected in the second volume (timepoint 2), completing the
pair. Landmarks can be adjusted by dragging the control point
in any of the orthogonal slice views. Once confirmed, the
landmark pair is stored and visualized in both the list and
the image viewers.

The tool supports real-time cross-linked navigation to fa-
cilitate accurate matching, with the same anatomical region
visible across all views and time-points. Users may assign
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Fig. 3. Annotation interface displaying paired MRI volumes and landmark list.

labels to landmark pairs and can load, edit, or remove previ-
ously defined annotations. Annotations from multiple experts
can be merged to support collaborative workflows and inter-
observer analysis. Additionally, landmark sets are stored in a
CSV format to be used in the quantitative evaluation of image
registration methods.

B. Evaluation Engine

The evaluation engine applies a list of off-the-shelf, most
used registration algorithms [14] to the given dataset and
computes quantitative metrics such as Target Registration
Error (TRE), Manhattan Distance (MD), and Robustness (R).
The engine supports any dataset with a compatible structure
and can integrate additional algorithms or metrics.

V. TOOL DEMONSTRATION

We demonstrated the tool using sample cases from the 2022
Brain Tumor Sequence Registration (BraTS-Reg) Challenge
[4]. Data consists of multi-modality brain MRI scans of
patients with glioblastomas for two time-points: preoperative
and post-operative. For each patient, four co-registered scans
are available: T1-weighted, T1-weighted contrast-enhanced
(TICE) with gadolinium contrast agent; T2-weighted; and
FLAIR. In Figure 3, we show a sample case from BraTS-Reg
with the annotated landmarks.

When used to benchmark standard registration methods,
the tool produced consistent and informative metrics. Table
I shows the comparative performance of different algorithms
[14] across several longitudinal cases, illustrating variations in
registration accuracy under pathological deformations. These
metrics help identify failure cases, assess method robustness,
and support algorithm selection tailored to specific clinical
scenarios. The built-in evaluation engine thus not only facili-
tates reproducible benchmarking but also accelerates method

Dataset Path: /home/Gayane/datasets Browse...

Ground Truth Path: /homesGayane/datasets/data Browse...

Registration Methods: | All Methods Selected_

Method TRE (mm) MD (mm)} R (%) =
1 Euler3D 3.98 4.85 70.13
2 Translation Only with Mean Squares 8.76 12.86 15.26
3 Translation Only with Joint Histogram Mutual Information 8.72 12.77 18.61
4 Similarity3D 10.07 14.81 11.74
5 Translation using Mattes Mutual Information 8.89 13.01 15.73
6 Bspline1 115.51 17458  45.69
7/ Demons1 7.36 10.86 22.20

Fig. 4. Evaluation engine interface showing registration methods and evalu-
ation metrics

development by providing direct and interpretable feedback on
alignment quality.

VI. CODE AND DATA AVAILABILITY STATEMENTS

LandMatch is an open-source project, developed and tested
on both Linux and Windows operating systems. Installation
instructions are provided in the project’s GitHub repository.
The source code is currently available for review upon re-
quest and will be released publicly at https://github.com/
GayaneKharatyan/LandMatch under the Apache-2.0 license.
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TABLE I
REGISTRATION PERFORMANCE ON BRATS-REG SAMPLES USING THE ANNOTATED LANDMARKS WITH STANDARD REGISTRATION METHODS.

Method TRE (mm) | MD (mm) | R (%)
Euler3D 3.98 4.85 70.13
Translation Only with Mean Squares 8.76 12.86 15.26
Translation Only with Joint Histogram Mutual Information 8.72 12.77 18.61
Similarity3D 10.07 14.81 11.74
Translation using Mattes Mutual Information 8.89 13.01 15.73
Bsplinel 115.51 174.59 45.69
Demons1 7.36 10.86 22.20
Demons2 7.44 10.96 19.57

VII. CONCLUSION

We introduced a lightweight and extensible annotation tool
for generating ground-truth landmarks in longitudinal medical
imaging. While demonstrated here on brain tumor MRI, the
tool is modality-agnostic and supports CT, PET, and other
imaging formats, making it adaptable to a wide range of
diseases. It provides a reproducible and scalable solution for
benchmarking registration algorithms. The pipeline is designed
to handle multimodal imaging inputs, jointly leveraging infor-
mation from multiple channels to enhance landmark annota-
tion and evaluation.

In future work, we plan to integrate machine learning based
keypoint suggestions to accelerate the annotation process,
as well as segmentation models to automatically generate
masks when these are not available in the dataset. Additional
developments include extending support to more formats (such
as DICOM) and integrating more sophisticated registration
algorithms such as [15] in the evaluation engine.

We also aim to formalize annotation guidance through a
standardized protocol defining clearly identifiable anatomical
landmarks with salient features. Such a protocol will promote
accurate localization, facilitate quality control (e.g., detecting
artifacts, verifying acquisition consistency), and ensure repro-
ducibility, thereby reducing inter-annotator variability. While
this protocol will be is designed for brain imaging, its structure
can be adapted to develop organ-specific guidelines for other
anatomical regions and imaging contexts.
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