
An Approach to Fuzzy Clustering of Strings
Armen Kostanyan

IT Educational and Research Center
Yerevan State University

Yerevan, Armenia
e-mail: armko@ysu.am

Arevik Harmandayan
American University of Armenia

Yerevan, Armenia
e-mail: arevik.harmandayan@gmail.com

Abstract—This paper discusses the problem of finding se-
quences of adjacent string segments that match a fuzzy pattern
represented as a sequence of fuzzy properties of segments. To
solve this problem, a modification of the Knuth-Morris-Pratt
algorithm is proposed, which, when moving to the next symbol
of the pattern, advances by a certain segment of the string. The
proposed algorithm is non-deterministically polynomial, which
opens up the possibility of constructing various approximation
algorithms. One such algorithm based on the greedy approach
is proposed.

This work may find application in the analysis of processes
generated by a discrete dynamic system, as well as for the
classification of DNA sequences using fuzzy prototypes described
in one way or another.

Keywords—Fuzzy string matching, fuzzy clustering, KMP
variations.

I. INTRODUCTION

In this paper, we discuss a heuristic algorithm for finding
sequences of adjacent segments of a given string that match
a given pattern. The latter is defined as a sequence of fuzzy
properties of segments. We say that a sequence of adjacent
segments matches a given pattern if they all satisfy the given
length constraints and, in addition, match the symbols of the
pattern with a given accuracy. We call this problem the fuzzy
string clustering problem. Note that many of the approximate
pattern matching problems in which meta-characters are al-
lowed in the pattern can be viewed as variations of fuzzy
string clustering. A detailed review of the works regarding
approximate pattern matching is presented in the monograph
[1].

The problem under consideration appears to be NP-hard,
due to the efficient procedure for verifying whether a given
sequence of segments matches the pattern, on the one hand,
and due to the exponential number of sequences of segments
to be verified, on the other hand.

We propose a heuristic algorithm that finds a fairly large
number of occurrences of a given fuzzy pattern in a string
using the prefix function from the Knuth-Morris-Pratt (KMP)
string matching algorithm [2] together with a string-advance
function to find the next valid segment, if one exists. The
string advance function we use is non-deterministic, which
makes our heuristic algorithm also non-deterministic. Then we
propose an efficient customization of the heuristic algorithm
in a greedily manner and estimate its complexity.

In particular, when adjacent segments must have unit length,
and the pattern, accordingly, is a sequence of fuzzy properties
of characters, the fuzzy string clustering problem is trans-
formed into the problem of finding segments of a given string
that match the pattern.

The study of fuzzy string clustering proposed in this paper
is consistent with several works by the authors in the field
of string matching. Particularly, in [3], the periodicity in the
pattern was used to improve the efficiency of the preprocessing
phase in the method of string matching with finite automata
and in the KMP algorithm. In [4], a nondeterministic transition
system was constructed to describe the possibilities of process-
ing a given text to find all occurrences of a fuzzy pattern in
it. In [5], an efficient algorithm was proposed for determining
all occurrences of a fuzzy pattern in the text, imitating the
KMP algorithm with a two-dimensional prefix table. In [6] and
[7], efficient solutions were proposed to split an entire string
into sufficiently large segments to match the fuzzy pattern as
closely as possible.

The paper is organized as follows.
Section 2 introduces the concept of a fuzzy clustering

pattern and formulates the problem of fuzzy string clustering.
Section 3 presents a heuristic solution to the fuzzy clustering
problem and analyzes its complexity. Sections 4 and 5 de-
scribe the greedy approach to fuzzy string clustering and its
customization for unit-size segments. Finally, the conclusion
summarizes the obtained results.

II. PRELIMINARIES

A. Fuzzy sets

Suppose (L,≤, 0, 1) is a linearly ordered set with the
smallest element 0 and the largest element 1. A fuzzy subset A
of the universal set U is defined by the membership function
µA : U → L that associates with each element x from U
the value µA(x) from L, called the degree of membership of
x in A [8]. We say that an element x certainly belongs to
A if µA(x) = 1, and it certainly does not belong to A if
µA(x) = 0. Conversely, if 0 < µA(x) < 1, then we say that
x belongs to A with degree µA(x).

B. Fuzzy clustering problem

Let Σ be an alphabet of characters and Σ∗ be the set of all
finite length strings in Σ.

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_55 225

We define a clustering symbol as a fuzzy subset of Σ∗ that
allows strings in Σ to be measured by elements from L. Given
a clustering symbol α and a string x ∈ Σ∗, we say that x
matches α with degree µα(x). We define the clustering pattern
to be an array P [1..m] of clustering symbols.

Suppose we are given a cluster verification function as a
mapping

check : Σ∗ → {true, false}.

Assume that the valid clusterings we are looking for must
consist of segments that satisfy the check function. The pair
C = (check, µ), where µ ∈ L is the minimum matching
degree, let us call a clustering constraint.

For an x ∈ Σ∗, a clustering symbol α, and a constraint C,
we say that x C-matches α and write x

C∼ α if check(x) =
true and µα(x) ≥ µ.

Accordingly, given a string T [1..n], a segmentation pattern
P [1..m](m ≤ n), and a constraint C, we define a (P,C) -
clustering of T as a sequence

s1 = [low1, high1], . . . , sm = [lowm, highm],

highk + 1 = lowk+1, 1 ≤ k ≤ m− 1,

of adjacent segments of T such that sk
C∼ P [k] for all k, 1 ≤

k ≤ m.
Finally, we define the (P,C) - clustering problem as the

problem of finding all valid (P,C) - clusterings of T .
Example 2.1: Let L be the segment [0, 1] of ordered reals

and Σ = {0, 1} be a two-element alphabet. Consider the
clustering symbols α0 and α1 such that for all x ∈ Σ∗,
µα0

(x) and µα1
(x) are the relative numbers of 0’s and 1’s

in x, respectively.
Suppose that T = 101100011, P = α1α0α1, and the

clustering constraint is C = (check, µ), where

check(x) = true ⇔ 2 ≤ size(x) ≤ 3 and µ = 2/3.

Then, there are the following valid (P,C) - clusterings of T :

T = (101)(100)(011), T = 1(011)(00)(011),

T = 10(11)(000)(11), etc.

III. STRING CLUSTERING HEURISTIC

The proposed heuristic is based on the KMP string matching
algorithm [2]. Note that in the KMP algorithm, moving for-
ward in the text is carried out by one position. On the contrary,
the proposed algorithm moves forward through the string by
the length of a segment that matches the next clustering
symbol. The found segment is then fixed as the next element
of the clustering to be constructed.

Let us consider the following functions.
• j = lookAhead(T, i, α, C). This function non-

deterministically returns the rightmost position of any
segment x that starts at position i of T and satisfies the
x

C∼ α condition, if such exists. Otherwise, the function
returns -1.

• advance(i, j). This function returns i+1 if j = −1, and
j + 1 otherwise.

For a given a clustering pattern P = P [1..m], define the
border of P to be a subarray P [1..k](k < m) such that P [i] =
P [m − k + i] for all 1 ≤ i ≤ k (that is, the first k symbols
of P coincide with its last k symbols). Let LB(P) denote the
longest border of P .

Define the prefix function for P as a mapping

π : {1, . . . ,m} → {0, . . . ,m− 1}

such that for all i, 1 ≤ i ≤ m,

π(i) = size(LB(P [1..i]).

Additionally, suppose that π(0) = 0. As it is known from the
KMP algorithm, the prefix function for P = P [1..m] can be
computed in O(m) time.

To represent the current clustering, let us use a multi-queue
of segments specified by their endpoints, with the following
operations:

• push(x): inserts x to the end,
• mulipop(quantity): removes quantity elements from

the beginning,
• size(): returns the number of segments in the queue,
• print(): prints the contents.
Based on these operations, we represent the clustering

heuristic as follows:

SC-HEURISTIC (T , P , n, m, C)
1 π = COMPUTE-PREFIX-FUNCTION(P , m)
2 mq = ∅ //multi-queue is empty
3 i = 1
4 while i ≤ n
5 j = −1
6 while (k = mq.size()) > 0 and
7 lookAhead(T, i, P [k + 1], C) == −1
8 mq.multipop(k − π(k)
9 if j ̸= −1
10 mq.push(< i, j >)
11 if mq.size() == m //entire pattern matched
12 mq.print(); mq.multipop(m− π(m))
13 i = advance(i, j)

Example 3.1: Suppose that the clustering symbols α0, α1

and the constraint C are defined as in Example 2.1,

T [1..20] = 00010001100100110100,

P [1..4] = α0α0α1α0.

Let us consider the following two options for processing
these data using the SC-HEURISTIC algorithm:

Option 1:
⋄ The segments 00 and 010 can be chosen to match α0α0.
⋄ Then, we have a mismatch for α1 in position i = 6.
⋄ Since π[2] = 1, we fix the matching α0 with the segment

T [3..5] = (010) and continue processing for T [6..20] and
P [2..4].

226

⋄ The segments 100, 11, and 001 can be chosen to match
subsequent α0α1α0, resulting in the first valid clustering

T [3..5] = (010)
C∼ α0, T [6..8] = (100)

C∼ α0,

T [9..10] = (11)
C∼ α1, T [11..13] = (001)

C∼ α0.

⋄ Since π[4] = 1, we fix the matching α0 with T [11..13] =
(001) and continue processing for T [14..20] and P [2..4].

⋄ The segments 00, 101, and 00 can be chosen to match
next α0α1α0, resulting in the second valid clustering

T [11..13] = (001)
C∼ α0, T [14..15] = (00)

C∼ α0,

T [16..18] = (101)
C∼ α1, T [19..20] = (00)

C∼ α0.

⋄ Thus, in this option, the SC-HEURISTIC algorithm gen-
erates the following two overlapping (P,C) - clusterings
of T :

T = 00(010)(100)(11)(001)0010100, and

T = 0001010011(001)(00)(101)(00).

For the illustration of this option, see Fig. 1.

Fig. 1. The first option for executing the SC-HEURISTIC algorithm

Option 2:
⋄ Likewise, the first choice T [1..3] = 000 to match α0

results in the only clustering

T = 000101001(100)(100)(101)(00).

illustrated in Fig.2.

Fig. 2. The second option for executing the SC-HEURISTIC algorithm

Note also that despite its non-deterministic nature, the SC-
HEURISTIC algorithm does not generate the following valid
(P,C) clastering

T = 0(001)(010)(011)(001)0010100.

IV. GREEDY APPROACH

A. Description

The use of a non-deterministic lookAhead function makes
the SC-HEURISTIC algorithm non-deterministically polyno-
mial. Let us build a greedy approximation of this function
based on the following details.

Given constants λ1 ≤ λ2, suppose that we are looking
for clusterings consisting of segments the length of which is
between λ1 and λ2. This can be achieved by assuming

check(x) = true ⇔ λ1 ≤ size(x) ≤ λ2 for all x ∈ Σ∗.

Next, assume that the symbols used in the pattern meet the
following conditions:
✓ The µα(ϵ) value can be computed in O(1) time, and
✓ For any c ∈ Σ, the value µα(xc) can be obtained from the

value of µα(x) in constant time with appropriate tracking
of the process of calculating the value of µα(x).

Clustering symbols that satisfy these conditions let us call
regular. Note that symbols α0 and α1 from Example 2.1 are
regular.

Taking these assumptions into account, let us consider the
greedy version of the lookAhead(T, i, α, C) function that
returns the rightmost position of the longest segment that starts
at position i of T and C - matches the clustering symbol α.
(As before, this function returns −1 if no such segment exists).

Due to the regularity of α and the (λ1, λ2)-boundedness of
segments, the value lookAhead(T, i, α, C) can be calculated
in a time proportional to the value of λ2, i.e., in constant time.

The version of the SC-HEURISTIC algorithm with a greedy
lookAhead function, let us call GREEDY-SC-HEURISTIC.

Example 4.1: Suppose the clustering symbols α0, α1, and
the clustering constraint C are defined as in Example 2.1; T
and P are defined as in Example 3.1, i.e.

T = 00010001100100110100, P = α0α0α1α0;

λ1 = 2, λ2 = 3.
It is easy to check that in this case, the only (P,C) -

clustering of T produced by the GREEDY-SC-HEURISTIC
algorithm is the same as that produced by the SC-HEURISTIC
in option 2, i.e.,

T = 000101001(100)(100)(101)(00).

B. Analysis

As it was mentioned, the prefix function calculation in line
1 takes O(m) = O(n) time. The assignments in lines 2 − 3
obviously take O(1) time.

Let us use the potential method ([2]) to estimate the
complexity of the outer while loop in lines 4 − 13. Define

227

the potential before each execution of the body of this loop as
size(mq), which is initially 0 and never becomes negative.

We note that the assignment in line 3 clearly has a constant
amortized complexity.

The same holds for the inner while loop in lines 6 − 8.
Indeed, the actual cost of an iteration (including computing
of the lookAhead function and performing a multipop op-
eration) is compensated by a decrease in potential with an
appropriate scaling of the potential unit.

The if statement in lines 9−10 has an amortized complexity
of O(1) due to the actual cost of O(1) and the potential
increase by at most one unit. The next if statement in lines
11 − 12 has an amortized complexity of O(m) due to the
print operation in line 12. Finally, the assignment in line 13
obviously has O(1) amortized complexity.

Thus, the amortized cost of the body of the outer while loop
is O(m). Since it runs O(n) times, we get an O(mn) estimate
for the actual cost of the outer loop.

Summarizing the above, we conclude that the GREEDY-
SC-HEURISTIC algorithm has a time complexity of O(mn).
It also uses O(m) memory to represent the multi-queue. □

V. UNIT SIZE CLUSTERS

Let us consider a special case of the fuzzy string clustering
problem, when all segments must have a length of 1, and,
accordingly, the clustering pattern is represented as a sequence
of fuzzy properties of string characters.

In [5], an O(mn) time algorithm was proposed to find all
occurrences of a pattern in a string using extra memory of
size O(mn). Observe that we can adapt the GREEDY-SC-
HEURISTIC algorithm to partially solve this problem in O(n)
time using O(m) memory.

Indeed,
• The function lookAhead(T, i, α, C) can be simplified to

a function that returns i + 1 if T [i + 1]
C∼ α, and −1,

otherwise,
• mq can be replaced by its size, and
• print can print the shift of the occurrence from the

beginning of the string, i. e. the value of i−m,
• advance can be simplified to i = i+ 1.
The GREEDY-SC-HEURISTIC algorithm adapted in this

way, after renaming it to the U-GREEDY-SC-HEURISTIC
algorithm, can be described as follows:

U-GREEDY-SC-HEURISTIC (T , P , n, m, C)
1 π = COMPUTE-PREFIX-FUNCTION(P , m)
2 k = 0 // number of characters matched
3 for i = 1 to n
4 while k > 0 and T [i+ 1]

C≁ α
5 k = k − π(k))

6 if T [i+ 1]
C∼ α

7 k = k + 1
8 if k == m //entire pattern matched
9 output(i−m)

VI. CONCLUSION

This paper considers the problem of finding clusterings of
strings according to a given fuzzy pattern. The considered
problem is investigated in the following aspects.

• A heuristic non-deterministic algorithm is proposed that
moves from one string segment to another based on
tracking the history of pattern prefix matching.

• This algorithm is greedily restricted to obtain a determin-
istic algorithm that finds a certain number of clusterings
in O(mn) time using O(m) memory, where m and n are
the sizes of the pattern and the string, respectively.

• It is found that in the special case where the clustering
segments must have unit length, the greedy algorithm
partially solves the clustering problem in O(n) time using
O(m) memory, while a more powerful algorithm that
finds all clusterings solves this problem in O(mn) time
using O(mn) memory.

REFERENCES

[1] W. Smyth. Computing regularities in strings: A survey. Euro-
pean Journal of Combinatorics, vol. 34, no. 1, pp. 3–14, 2013.
doi:10.1016/j.ejc.2012.07.010. Combinatorics and Stringology.

[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algo-
rithms, 4th edition, The MIT Press, 2022.

[3] A. Kostanyan, A. Karapetyan. String Matching in Case of Periodicity
in the Pattern. In: Dolinina O, Brovko A, Pechenkin V, Lvov A, Zhmud
V, Kreinovich V (eds.), Recent Research in Control Engineering and
Decision Making. Springer International Publishing, Cham. ISBN 978-
3-030-12072-6, pp. 61–66, 2019.

[4] A. Kostanyan. Fuzzy string matching with finite automata. In: 2017
Computer Science and Information Technologies (CSIT), pp. 9–11,
2017. doi:10.1109/CSITechnol.2017.8312128.

[5] A. Kostanyan. Fuzzy String Matching Using a Prefix Table. Mathe-
matical Problems of Computer Science, vol. 54, pp. 116–121, 2020.
doi:10.51408/1963-0065.

[6] A. Kostanyan, A. Harmandayan. Segmentation of String to Match
a Fuzzy Pattern, In Proc. of Computer Science and Information
Technologies (CSIT) Conference, Yerevan, Armenia, pp. 17-19, 2019.

[7] A. Kostanyan, A. Harmandayan. Mapping a Fuzzy Pattern onto a
String. In Proceedings on 2019 IEEE Conference ”2019 Computer
Science and Information Technologies” (CSIT), Yerevan, Armenia,
2019, IEEE Press, USA, pp. 5 - 8, 2019.

[8] A. Piegat. Fuzzy Modeling and Control. Physica-Verlag Heidelberg,
Springer-Verlag, 2001.

228

