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Abstract—This paper addresses the problem of calibrating
probabilistic predictions produced by machine learning models
in intrusion detection systems. Due to inherent bias and
overconfidence, such models often yield poorly calibrated
probability estimates. We propose Stepwise Dirac Calibration, a
piecewise-constant calibration method based on partitioning the
[0, 1] interval into non-overlapping subintervals.

Stepwise Dirac Calibration explicitly accounts for the
boundary conditions and targets reduction of calibration errors,
including Expected Calibration Error, Brier score, and Log-loss.

Experimental evaluation on the CIC-IDS 2017 dataset
demonstrates that Stepwise Dirac Calibration outperforms
traditional methods in overconfident and unstable settings, while
maintaining robustness and computational efficiency.
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. INTRODUCTION

The growing complexity and volume of network traffic
have made traditional rule-based intrusion detection
approaches increasingly insufficient. As cyber threats become
more sophisticated, there is a pressing need for intelligent
systems capable of detecting novel and subtle attack patterns.
Acrtificial Neural Networks (ANN), when integrated into
Intrusion Detection Systems (IDS), play a crucial role in
enhancing the resilience of network infrastructures against
cyberattacks. ANN and the Machine Learning (ML) models
built upon them are increasingly applied in domains where
both decision accuracy and the reliability of the decision are
of paramount importance [1, 2]. Probabilistic classifiers
provide such reliability in the form of estimated class
probabilities. However, due to the overconfidence bias
inherent in most models, these estimates often turn out to be
poorly calibrated. For instance, a score of 0.9 does not
guarantee that 90% of such cases correspond to the positive
class [3, 4]. Many classification models tend to be
overconfident in their predictions, which negatively affects
decision-making in real-time security systems. Within IDS
environments, it is essential not only to classify traffic
correctly but also to interpret the confidence level of
predictions.

In such high-risk scenarios, the assessment of prediction
reliability requires deeper modification of the output
probability distribution. Several studies have addressed
probability calibration under these constraints [5-10], but the
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Stepwise Dirac Calibration (SDC) method has not yet been
explored in the context of cybersecurity. SDC is particularly
suitable under conditions of limited data availability and high
noise, as it constructs a discrete, stepwise calibration function
rather than a smooth one.

The scientific novelty of the proposed method lies in its
ability to strengthen the discontinuities between adjacent
intervals, thereby approximating the behavior of an ideal
discrete calibrator.

Il. TERMS AND DEFINITIONS

+» Stepwise Dirac Calibration is a method belonging to
the class of discrete models for calibrating probabilistic
predictions. SDC  assumes a  piecewise-constant
approximation of the calibration function over the set of
predicted probability values. The idea is that after calibration,

each value of P receives a point (discrete) estimate Q - The

plot of ¢ ( f)) resembles a sum of weighted delta functions
and is defined by Expression (1) [3, 4].
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where: g ( f)) is the calibration function - it transforms the

predicted probability P into the calibrated one, K is the
number of bins (intervals) in the calibration model, Bk is the

k™ bin (an interval of probability values) on the [0, 1] axis, J,

is the local value of the function g, p is the generalized
probability variable (often used as the argument of the

function), 1Bk(|0) - is an indicator function for bin

membership [11-13].

+» Expected Calibration Error (ECE) is a measure of the
discrepancy between the predicted probabilities of a model
and the empirical frequency of positive outcomes. ECE is
defined based on Expression (2) [4].
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where: N is the total number of examples in the validation
set, P, is the average predicted probability value in bin Bk
[4].
+» CIC-IDS 2017 (Canadian Institute for Cybersecurity
Intrusion Detection System 2017 dataset) is an open dataset
developed to simulate real network traffic, including various
types of attacks. The traffic includes the following categories
of attacks: DDoS (Distributed Denial of Service), Brute
Force, Botnet, Web attacks, Infiltration, PortScan,
Heartbleed, and others. The dataset contains more than 80
features based on flow analysis [15-16].

I1l. DESCRIPTION OF THE PROBLEM

Let there be a classification model that produces
probabilistic predictions f(X)=p e [0,1]], interpreted as
an approximation of the conditional probability of belonging
to the positive class. Here, f(X) is the output of the
uncalibrated model (the predicted probability of belonging to
the positive class), P -is the estimated probability that object
X belongs to the positive class. It is required to construct a
calibration function g :[0,1] - [0,1] such that:

P(Y=1g(p)=p)~p
where: P is the probability function (probability mea-
sure), Y is a random variable, p is a probability value on the
interval [0, 1].

Boundary conditions

% The number of intervals K € N is fixed.

+ The value of the calibration function is constant within
each interval B, .

+ Separate datasets are used for training and calibration:
training is performed on one subset, while calibration and
evaluation are performed on another one.

IV. EXPERIMENT DESCRIPTION

A High Performance Computing (HPC) cluster was used
to install the Windows Server 2019 operating system (OS)
[17], with the Hyper-V role activated. A Software-Defined
Networking (SDN) environment was configured, within
which Windows 10, Kali Linux, and Ubuntu 22.04 LTS OS
were deployed (Fig. 1) [18, 19].

+ On Ubuntu 22.04 LTS, the Snort IDS was deployed
alongside ML libraries - TensorFlow, NumPy, and Scikit-
learn - to evaluate performance using the metrics
brier_score_loss, log_loss and accuracy_score [20].

4+ OnWindows 10, a File Transfer Protocol (FTP) server was
deployed and used as the target system for both legitimate
and malicious connection attempts.

+ Kali Linux was used to generate and analyze network
traffic using tools such as Metasploit and tcpdump.
Additionally, malware samples including engrat, surtr,
stasi, otario, dm, v-sign, tequila, flip, grum, mimikatz, and
others - sourced from [21-23] - were injected into the CIC-

IDS 2017 dataset via Metasploit. Detection was carried out
using the methods described in [25-27].
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Fig. 1. Diagram of a Software-Defined Networking

After training the classifier on a training set, the output
probability values were calibrated using the proposed method.
For comparison, an approach based on isotonic regression was
used [28, 29].

Calibration quality was evaluated using the metrics:
accuracy, ECE, Brier score, and log-loss.

V. RESEARCH RESULTS

Research results are summarized in Table 1, which shows
the average calibration error across probability subranges, and
Table 2, which compares calibration methods using key
metrics on the CIC-IDS 2017 test set. Visualizations are
presented in Figures 2-5 and were generated using the

TensorFlow Probability and Matplotlib libraries.

Table 1
Average Calibration Error Across Probability Subranges
Probability sSDC Isotonic No
Range (Error) Regression Calibration
[0.0-0.2] 0.011 0.015 0.038
[0.2-0.4] 0.014 0.019 0.041
[0.4-0.6] 0.026 0.026 0.047
[0.6 —0.8] 0.018 0.023 0.044
[0.8-1.0] 0.016 0.020 0.039
Table 2
Comparison of Calibration Methods
Based on Key Metrics
C:}Iftf(t)gm ECE | Brier score | log-loss | | accuracy t
SDC 0.024 0.081 0.193 0.971
Isotonic 0.036 0.089 0.214 0.978
regression
No 0.083 0.104 0.271 0.962
calibration
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The arrows indicate the desired direction of each metric:
ECE - a lower value indicates more accurate model
calibration, Brier score, log-loss - lower values indicate
better performance, and accuracy - a higher value indicates
better performance.
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Fig. 2. Discrete Calibration Function
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Fig. 3. Comparison of SDC and Perfect Calibration

In the mid-probability range ([0.4-0.6]), the accuracy of
SDC is comparable to that of isotonic regression,
demonstrating SDC’s capacity to adapt to regions of high
uncertainty while preserving its discrete structure. Moreover,
SDC provides a more precise alignment between predicted
probabilities and true class frequencies. This is particularly
beneficial for overconfident models where conventional
calibration methods tend to overcorrect.

By preserving local probability structure, SDC maintains
calibration quality without introducing unnecessary
smoothing, making it well-suited for security-critical
applications such as IDS.

Additionally, its low computational complexity and
interpretability further support its applicability in real-time
and resource-constrained environments.
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Fig. 4. Comparison of SDC and Isotonic Regression
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Fig. 5. 3D Error Surface in Feature Space

The spatial 3D error surface reveals that local minima
align more precisely with regions of high sample density. In
the boundary zones of probability distributions (i.e., at low
and high levels of predicted confidence), SDC demonstrates
stable and structurally consistent discrete calibration, which is
especially important for systems making binary decisions
based on threshold values in aggregate. This stability helps
prevent critical misclassifications near decision boundaries.
As a result, the method maintains reliability even under
uncertainty or data sparsity at the extremes of the probability
spectrum.

The piecewise-constant structure of SDC further reduces
sensitivity to noise, ensuring smoother and more interpretable
calibration behavior. Such consistency is especially valuable
in safety-critical applications, where overconfident or
unstable predictions can lead to severe consequences.
Additionally, the alignment of calibration steps with sample-
dense regions supports efficient use of available data without
requiring aggressive smoothing or interpolation.
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V1. CONCLUSIONS

The SDC method yields the lowest calibration error
metrics, including ECE, Brier score, and log-loss, compared
to isotonic regression. SDC maintains high classification
accuracy without degrading the accuracy metric, confirming
its compatibility with high-performance classifiers (in this
case, XGBoost).

The method is effective when there are sufficient
observations in each bin. However, in the presence of very
rare  probability values, overfitting may  occur.
SDC is particularly suitable for models with a tendency
toward overconfidence, especially under class imbalance
conditions.

Therefore, SDC can be recommended as an effective and
easily implementable method for the discrete calibration of
probabilistic predictions in cybersecurity applications,
particularly within IDS systems operating under conditions of
high dynamism and variability in network traffic.
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