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Abstract—This study examines the performance of three

encryption algorithms: the Walsh Transform, the Advanced 

Encryption Standard (AES), and a novel hybrid approach 

that integrates both techniques. The cryptographic strength 

of each method is assessed using key metrics such as entropy, 

avalanche effect and chi-square distribution. The evaluation 

focuses on the degree of randomness in the encrypted output, 

the sensitivity of the encryption to minor changes in the input, 

and the uniformity of the ciphertext distribution. The findings 

indicate that the hybrid AES+Walsh algorithm offers 

enhanced security characteristics, making it a promising 

solution for applications requiring robust data protection. 
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Cryptography combines scientific principles and 
practical techniques to protect information by transforming 
it into unreadable formats for unauthorized parties. Among 
modern cryptographic tools, the Walsh Transform and 
hybrid encryption methods that integrate Walsh functions 
with established algorithms have recently attracted 
attention due to their potential to enhance security metrics 
such as diffusion and randomness. 
This study focuses on evaluating the performance of three 
encryption techniques: the Walsh Transform, the Advanced 
Encryption Standard (AES), and a novel hybrid 
AES+Walsh algorithm. AES, standardized by the U.S. 
National Institute of Standards and Technology in 2001 as 
a successor to the Data Encryption Standard (DES), is a 
widely adopted block cipher operating on 128-bit data 
blocks with key sizes of 128, 192, or 256 bits. Its proven 
security and efficiency make AES a relevant benchmark for 
assessing new cryptographic approaches. 
In our early works [1-5], we have observed text encryption 
topics with Walsh transform, RSA encryption, and 
combined the methods to get a hybrid W-RSA encryption 
algorithm. RSA has a plaintext length limitation, making it 
unsuitable for large data encryption. In contrast, the AES 
algorithm does not have limitations for the plaintext. By 
investigating these algorithms, this research aims to 
explore how the integration of Walsh functions with AES 
can improve cryptographic strength, measured through 
entropy, avalanche effect, and statistical tests, thereby 
contributing to the development of more robust encryption 
schemes. 

II.

Before introducing the Walsh function [6-9], we 
need to establish what the Rademacher function is. 
Definition 1. The Rademacher system is defined as 

𝑟0(𝑥) = {
1, 𝑥 ∈ [0,

1

2
) ,

−1, 𝑥 ∈ (
1

2
, 1] ,

𝑟0(𝑥 + 1) = 𝑟0(𝑥),  𝑟𝑘(𝑥)

= 𝑟0(2𝑘𝑥), 𝑘 = 1,2,..., 

i.e., to find the 𝑟𝑘 Rademacher function, the interval [0; 1)
is split into 2𝑘+1

 equal subintervals, on each of which the
𝑟𝑘(𝑥) function takes +1 and -1 values successively.

The Walsh system is the collection of all finite 
products formed from Rademacher functions. Precisely 
stated: 
Definition 2. 𝑊0(𝑥) ≡ 1. Let n be any natural number,
represented as 𝑛 = ∑ 2𝑚𝑠𝑘

𝑠=1 , 𝑚1 > 𝑚2 > ⋯ > 𝑚𝑘. The
n-th Walsh function will be defined as follows: 

𝑊𝑛(𝑥) = ∏ 𝑟𝑚𝑠
(𝑥)

𝑛

𝑠=1

Properties of Walsh functions 
1. Orthogonality: The Walsh functions 𝑊𝑛(𝑥) are

orthogonal on the interval [0, 1], meaning that
for all 𝑚, 𝑛 ∈ ℕ the following holds:

∫ 𝑤𝑚(𝑥)𝑤𝑛(𝑥)𝑑𝑥

1

0

= {
1, 𝑤ℎ𝑒𝑛  𝑚 = 𝑛
0, 𝑤ℎ𝑒𝑛  𝑚 ≠ 𝑛

2. Unit Energy: Each function 𝑤𝑘(𝑥) has the norm
𝐿2 equal to 1:

‖𝑤𝑘(𝑥)‖2 = √∫ 𝑤𝑘
2(𝑥)𝑑𝑥

1

0

= 1

3. Completeness: Any function 𝑓(𝑥) ∈ 𝐿2[0,1) can
be expanded in a Walsh series: 

𝑓(𝑥) = ∑ 𝑐𝑘𝑤𝑘(𝑥)

∞

𝑘=0

where the coefficients 𝑐𝑘 are defined as:

𝑐𝑘 = ∫ 𝑓(𝑥)𝑤𝑘(𝑥)𝑑𝑥

1

0

WALSH FUNCTIONS AND HADAMARD MATRIX

I. INTRODUCTION 
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We can get Walsh functions using the Hadamard 
Matrix [10]. 

Walsh functions can be constructed using 
Hadamard matrices. A Hadamard matrix is a square matrix 
with entries of +1 or -1, where all rows are mutually 
orthogonal—meaning any two different rows have a scalar 
product of zero. For order n (where n is a power of 2), a 
Hadamard matrix is constructed as: 

𝐻𝑛 = [
𝐻𝑛/2 𝐻𝑛/2

𝐻𝑛/2 −𝐻𝑛/2
],

where 𝐻1 = [1].
For example: 

𝐻2 = [
1 1
1 −1

] , 𝐻4 = [

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ].

The rows of the Hadamard matrix, when arranged 
in proper order, constitute the Walsh functions. This gives 
us a straightforward, recursive approach to generating 
Walsh functions [10]. 

III.
Given a text expressed as a data vector 𝑥 ∈ ℝ𝑁,

where 𝑁 = 2𝑛, we apply the Walsh-Hadamard transform
for encryption in the following manner: 

1. Direct transformation:
𝑦 = 𝐻𝑛𝑥.

2. Inverse transformation: to decipher the data, the
transposed matrix is used:

𝑥 =
1

𝑁
𝐻𝑛

𝑇𝑦.

Let 𝑒 represent the noise vector added to the encrypted 
data: 

𝑦̃ = 𝑦 + 𝑒
When reversed, the recovered data will be: 

𝑥̃ =
1

𝑁
𝐻𝑛

𝑇𝑦̃ = 𝑥 +
1

𝑁
𝐻𝑛

𝑇𝑒

If the noise vector 𝑒 is small in the 𝐿2 norm, the
reconstruction error will also be small: 

‖𝑥̃ − 𝑥‖2 =
1

𝑁
‖𝐻𝑛

𝑇𝑒‖2 ≤
1

𝑁
‖𝐻𝑛‖2‖𝑒‖2 = ‖𝑒‖2

IV.

The Walsh transform offers a different approach 
from conventional encryption techniques—it doesn’t rely 
on asymmetric keys. Instead, both the sender and receiver 
share the same key to perform the transformation and its 
reversal. This simplifies the encryption process and 
reduces computational demands compared to asymmetric 
methods. The encryption process begins by expressing the 
original data as a vector, then multiplying it by a Walsh 
matrix. The result is a set of Walsh coefficients, which 
serve as the encrypted output ([1,2]). Before applying the 
Walsh transform, some pre-processing steps are typically 
required, such as formatting, normalizing, or padding the 
data. The transform decomposes the input into coefficients 
that reflect the contribution of each Walsh basis function to 
the original data. 

Let’s take a closer look at the math behind the Walsh 
transform. Consider an original data set as a 𝑥 =
[𝑥1, 𝑥2, . . . , 𝑥𝑛] vector where the dimension represents the
size of the data. 
The Walsh transform is applied by multiplying this vector 
by a Walsh matrix 𝐻 of the same dimension. The result is a 
vector of coefficients 𝑐 =  [𝑐1, 𝑐2, . . . , 𝑐𝑛], obtained as:

𝑐 =  𝐻 ∗  𝑥 .
These coefficients represent the transformed version of the 
original data, where each value indicates the contribution 
of a corresponding Walsh basis function. 
During decryption, the original data is reconstructed using 
the selected significant coefficients. 
Here's how that works: 
Let's say we have a 𝑐′ =  [𝑐1

′ , 𝑐2
′ , . . . , 𝑐𝑘′], vector of

significant coefficients where k represents how many 
significant coefficients, you're working with. To recover 
the original data, the inverse Walsh transform is applied 
using only the selected significant coefficients: 

𝑥′ =  𝐻𝑇 ∗  𝑐′,
In this case, the 𝐻𝑇  matrix represents the transposed
version of the Walsh transform matrix. 

The Advanced Encryption Standard (AES) [11,12] 
is a symmetric encryption algorithm that protects data by 
scrambling it into 128-bit blocks using a secret key of 128, 
192, or 256 bits. Depending on the key size, AES runs 
through 10, 12, or 14 rounds of encryption, with each round 
designed to thoroughly mix and obscure the original data. 
It arranges each block into a 4×4 grid of bytes and performs 
a sequence of operations: SubBytes replaces each byte 
using a carefully designed lookup table, ShiftRows shifts 
the rows of the grid to spread changes across the block, 
MixColumns blends the bytes within each column using 
finite field mathematics, and AddRoundKey mixes in a 
portion of the expanded key using XOR. The final round 
omits the MixColumns step to ensure decryption can 
reverse the process cleanly. The round keys themselves are 
generated by expanding the original key through rotation, 
substitution, and XOR operations. Decryption works by 
applying the inverse operations in reverse order. AES’s 
design is rooted in strong mathematical principles, 
achieving both confusion and diffusion to resist attacks. Its 
balance of security, speed, and efficiency has made it the 
global standard for encrypting everything from online 
communications and file storage to VPNs and messaging 
apps. 

VI.

The hybrid encryption algorithm developed in this work 
combines the Walsh Transform with the Advanced 
Encryption Standard (AES) to establish a two-layered 
security mechanism. In this approach, the Walsh Transform 
acts as a preprocessing stage, applied to the original data 
before AES encryption. By leveraging orthogonal Walsh 
functions, the input is transformed into the Walsh domain, 
where its structure is obscured in a pattern of coefficients 
(Figure 1).  

WALSH-HADAMARD TRANSFORM
V. ADVANCED ENCRYPTION STANDARD (AES) 
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The process begins by converting the plaintext 
message into its ASCII-based numerical representation, 
forming an input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]. To enable
compatibility with the Walsh Transform, the vector is 
padded such that its length 𝑛 becomes a power of two. The 
transformed data is then computed using the Walsh matrix 
𝐻, where the encryption-stage coefficients are obtained via 
the equation: 

𝑐 = 𝐻 ⋅ 𝑥. 
Here, 𝐻 is an orthogonal Walsh matrix of size 𝑛 × 𝑛, and 𝑐 
is the resulting vector of Walsh-domain coefficients. This 
transformation disperses the structure of the original data, 
making it resistant to pattern recognition or statistical 
analysis. The coefficients 𝑐 are converted into a floating-
point byte stream to preserve numerical precision, and this 
byte stream is encrypted using AES in Cipher Block 
Chaining (CBC) mode. AES utilizes a randomly generated 
128-bit symmetric key and a 128-bit initialization vector 
(IV) to perform secure encryption. 
During decryption, the process is reversed. AES decryption 
is applied first using the same key and IV to retrieve the 
encoded Walsh-domain values. These values are then 
processed using the inverse Walsh Transform. Given that 
Walsh matrices are orthogonal, the inverse transform is 
equivalent to the original transform, i.e., 𝐻−1 = 𝐻.
Therefore, the original message is recovered by applying: 

𝑐 = 𝐻 ∙ 𝑐
The resulting vector is rounded to the nearest integers, any 
padding is removed, and the ASCII values are decoded to 
reconstruct the original plaintext message. This hybrid 
encryption scheme combines the structural obfuscation of 
the Walsh Transform with the cryptographic strength of 
AES, offering enhanced resistance against both brute-force 
and statistical attacks while maintaining efficient 
performance. 

Figure 1. Diagram of Hybrid approach 

To illustrate the process, consider the plaintext 
message “Chat.”  Each character is first converted into its 
ASCII code. This gives us the input vector: 

𝑥 = [67,  104,  97, 116]
Since the vector length 𝑛 = 4 is already a power of two, no 
padding is necessary. We then apply the Walsh transform 
using the 4 × 4 Walsh matrix 𝐻: 

𝐻 = [

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ]

Multiplying the matrix by the input vector: 

𝑐 = 𝐻 ∙ 𝑥 =  [

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ]  ∙ [

67
104
97

116

] = [

384
−56
−42
−18

]

These transformed Walsh-domain coefficients 𝑐 =
[384, −56, −42, −18] are converted into 32-bit floating-
point format and serialized into bytes. Then, AES 
encryption is applied using CBC mode with a randomly 
generated key and IV. For example: 

𝐴𝐸𝑆 𝐾𝑒𝑦 (128 − 𝑏𝑖𝑡): 
3𝑓2𝑎9𝑐5𝑑8𝑏7𝑒4𝑓01𝑑23456789𝑎𝑏𝑐𝑑𝑒𝑓𝑓

and 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑉)(128 − 𝑏𝑖𝑡):
00112233445566778899𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝑓𝑓

The encrypted output is a ciphertext in hexadecimal format, 
e.g.:

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 7𝑎3𝑓1𝑏9𝑐5𝑒2𝑑8𝑓4𝑎9𝑐7𝑒0𝑏12 …
On the receiving side, the AES decryption using the same 
key and IV restores the byte stream of Walsh-domain 
coefficients: 

𝑐 = [384,  − 56,  − 42,  − 18]
Applying the inverse Walsh Transform (same matrix 𝐻, 
since it is orthogonal): 

𝑥 = 𝐻 ∙ 𝑐 =  [

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ]  ∙ [

384
−56
−42
−18

] = [

67
104
97

116

]

These recovered values are converted back to characters: 
[67,  104,  97,  116] → "𝐶ℎ𝑎𝑡"

The original message “Chat” is successfully restored. 

VII.

When we want to figure out how well cryptographic 
algorithms actually work and whether we can trust them, 
we look at several different measurements. They help us 
understand how secure they are, how fast they perform, and 
how random their output really is.  

One of the first things we check is something called 
entropy - basically, this tells us how unpredictable the 
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system is, which is crucial for good encryption. It is 
calculated using the Shannon entropy formula: 

𝐻 = − ∑ 𝑝𝑖 ∙ log2(𝑝𝑖)

𝑛

𝑖=1

where 𝐻 is the entropy in bits, 𝑝𝑖  is the probability of the
𝑖𝑡ℎ symbol, and 𝑛 is the number of possible symbols.

Another key thing we look for when testing 
cryptographic algorithms is something called the 
Avalanche Effect. This basically means that even tiny 
changes to your input - like flipping just one bit - should 
create major, unpredictable changes in what comes out the 
other end. 
In a perfect scenario, changing a single bit in your input 
should flip about half of the bits in your output. This kind 
of behavior is really important because it creates strong 
diffusion and stops attackers from spotting patterns they 
could exploit. 
The Avalanche Effect is typically measured by: 

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑢𝑡𝑝𝑢𝑡 𝐵𝑖𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 𝐵𝑖𝑡𝑠
∙ 100%

The Chi-Square Test is another way we check how 
random and evenly distributed the output from 
cryptographic systems really is - things like encrypted text 
or key streams. The essence of the method is to compare 
how often certain symbols (like bits or bytes) actually show 
up versus how often they should appear if everything was 
truly random. 
The test is calculated using the formula: 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

where 𝜒2 is the Chi-Square statistic, 𝑂𝑖  is the observed
frequency of the 𝑖𝑡ℎ symbol, 𝐸𝑖  is the expected frequency
of the 𝑖𝑡ℎ symbol, 𝑛 is the number of distinct symbols.

Table 1 shows how three different encryption 
methods stack up when they're all given the same test 
phrase: "Hello Armenia!"  
First, we checked entropy. The hybrid AES+Walsh method 
came out on top with a score of 3.9448 bits per byte, which 
means it creates the most random-looking results. Regular 
AES wasn't far behind at 3.4772, while Walsh by itself only 
managed 2.9261—still decent, but not as impressive. 
Next, we tested the avalanche effect. Both AES and the 
combined method performed really well here, changing 
about 30% of the bits (30.47% for AES and 30.86% for 
AES+Walsh). Walsh alone only managed to change 
13.94% of the bits. 
Finally, we ran a chi-square test to see how evenly 
distributed the scrambled bytes were. AES scored the best 
at 272.00, the hybrid method got 259.20, and Walsh alone 
came in at 240.00. 
While Walsh adds some interesting mathematical 
complexity, AES on its own and the AES+Walsh 
combination both deliver much stronger security than using 
Walsh by itself. The hybrid approach gives you the best 

randomness, while AES provides the most balanced overall 
performance. 

Table 1. Performance Comparison of Encryption 
Algorithms (For “Hello Armenia!.” plaintext.) 

Walsh AES AES+W 
Entropy 2.9261 bits 

per byte 
3.4772 bits 
per byte 

3.9448 bits 
per byte 

Avalanche 
Effect 

13.94% 
bits 
changed 

30.47% 
bits 
changed 

30.86% 
bits 
changed 

Chi-Square 
Test 

240.00 272.00 259.20 

VIII.

When examining the test results collectively, it 
becomes evident that AES—whether applied 
independently or in combination with the Walsh 
Transform—offers significantly stronger security 
compared to using the Walsh Transform alone. Both AES 
and the hybrid AES+Walsh methods produce encrypted 
outputs that exhibit a high degree of randomness, a 
desirable property that enhances resistance to 
cryptanalysis. These methods also demonstrate strong 
sensitivity to minor alterations in the input: even a single-
character change in the original message results in a 
substantially different ciphertext. This characteristic is 
essential for robust data protection. 

Notably, the hybrid approach that integrates AES 
with the Walsh Transform appears to offer a synergistic 
advantage. It combines the established cryptographic 
strength of AES with the structural obfuscation introduced 
by the Walsh Transform, thereby enhancing overall 
encryption complexity and making unauthorized 
decryption substantially more difficult. 
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