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Abstract—This paper presents a high-performance 
implementation of the double-precision general matrix-matrix 
multiplication (DGEMM) operation, optimized through 
vectorized micro-kernels, two-level cache blocking, memory 
alignment, and multithreading techniques. The proposed 
approach leverages AVX2, fused multiply-add (FMA) 
instructions and a custom 6×8 micro-kernel to maximize 
instruction-level parallelism and register utilization. A memory-
aware blocking strategy is employed to fit submatrices within L1 
and L2 cache hierarchies, reducing cache misses and improving 
data locality. Thread-level parallelism is implemented using 
POSIX threads (Pthreads) with explicit workload distribution 
and memory affinity control. Empirical evaluations on a 12-core 
x86_64 architecture demonstrate a performance advantage, 
achieving multiplication of 4096×4096 matrices with a 13.3% 
increase in speed compared to the standard NumPy 
implementation. The results highlight the impact of fine-grained 
control over threading, memory, and instruction scheduling on 
achieving superior performance in dense linear algebra 
operations. 

Keywords—DGEMM, matrix multiplication, multithreading, 
high-performance computing, optimization. 

 

I. INTRODUCTION  
Matrix multiplication is a foundational operation in 

scientific computing, graphics processing, machine learning, 
and numerical linear algebra. Among its most widely used 
formulations is the double-precision general matrix-matrix 
multiplication (DGEMM), which computes C = αAB + βC, 
where A, B, and C are dense matrices. Due to its high 
computational cost and widespread use, significant research 
effort has been devoted to optimizing DGEMM for modern 
CPU architectures. 

Modern processors offer extensive hardware features, 
such as SIMD (Single Instruction, Multiple Data) instruction 
sets like AVX2, multi-core parallelism, and deep memory 
hierarchies. However, achieving near-peak performance on 
such architectures requires a deep understanding of low-level 
optimization strategies, including vectorization, cache 
blocking, memory alignment, and thread-level parallelism. 
High-performance libraries such as Intel MKL and 
OpenBLAS have demonstrated the potential of such 
techniques, but these implementations often lack fine-grained 

control, especially for performance tuning and educational 
purposes. 

This paper presents a custom DGEMM implementation 
that explicitly exploits AVX2 vectorization and fused 
multiply-add (FMA) instructions via a 6×8 micro-kernel, 
combined with a two-level blocking strategy aligned with L1 
and L2 cache sizes. Thread-level parallelism is implemented 
using POSIX threads (Pthreads), allowing explicit control 
over workload distribution and memory locality. This 
approach is also compared with the highly optimized NumPy 
implementation (which internally uses BLAS), using large 
matrices of size 4096×4096 as a benchmark. 

II. RELATED WORK 
Optimizing dense matrix multiplication has been a central 

topic in high-performance computing (HPC) for decades, 
owing to its ubiquity in scientific simulations, machine 
learning, and numerical methods. Numerous libraries and 
frameworks have been developed to provide optimized 
DGEMM implementations, with a focus on exploiting the full 
computational capacity of modern processors. 

One of the most influential efforts is the Basic Linear 
Algebra Subprograms (BLAS) interface, particularly Level 3 
routines such as DGEMM. Highly tuned BLAS libraries like 
Intel Math Kernel Library (MKL), OpenBLAS, and ATLAS 
leverage advanced features of the CPU, including SIMD 
vectorization, multi-threading, and cache-aware blocking. 
The GotoBLAS architecture [1], which introduced a register-
level blocking strategy and loop restructuring, laid the 
groundwork for many of these libraries. 

In terms of parallelization strategies, OpenMP is widely 
adopted for its simplicity and portability, offering a high-level 
abstraction for shared-memory parallelism. However, 
OpenMP’s scheduling overhead and limited control over 
thread affinity can hinder fine-tuned performance in certain 
scenarios [2]. Alternatively, POSIX threads (Pthreads) 
provide low-level access to thread creation and 
synchronization primitives, enabling more precise 
management of workload distribution and memory locality, 
albeit at the cost of increased programming complexity. 

Vectorization is another key factor in high-performance 
DGEMM implementations. Modern CPUs support wide 
SIMD instructions (e.g., AVX2, AVX-512), which can 
process multiple data elements in parallel. Studies such as [3, 
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4, 5, 6] have shown that manually crafted vectorized micro-
kernels, when paired with appropriate loop unrolling and 
register blocking techniques, can significantly outperform 
compiler-generated SIMD code. These approaches allow fine-
grained control over instruction scheduling, register reuse, and 
memory alignment, which are often lost in automatic code 
generation due to conservative compiler heuristics. These 
findings underscore the continued relevance of manual 
optimization, especially in scenarios where peak performance 
and architectural efficiency are paramount—such as HPC, 
scientific computing, and performance-critical numerical 
kernels. 

Memory hierarchy also plays a critical role in performance 
[7]. Cache blocking, also known as tiling, is a well-known 
technique for improving the temporal and spatial locality of 
memory accesses. Works such as [8] demonstrate how multi-
level blocking strategies, aligned with L1, L2, and even L3 
cache sizes, can drastically reduce cache misses and improve 
throughput. By carefully partitioning matrices into tiles that 
fit into the different layers of the CPU’s memory hierarchy, 
these techniques minimize costly memory accesses and 
increase temporal locality. 

While libraries like NumPy internally rely on optimized 
BLAS backends, their performance is ultimately constrained 
by the general-purpose nature of those libraries. In contrast, 
custom implementations allow for architecture-specific 
tuning and provide valuable insights into performance 
bottlenecks and optimization strategies. 

This paper builds upon the aforementioned techniques by 
integrating AVX2 vectorized micro-kernels, two-level 
blocking for cache efficiency, memory alignment via 
posix_memalign, and fine-grained parallelism using Pthreads. 
This work contributes to the ongoing study of low-level 
optimization for DGEMM by quantitatively comparing it 
against high-level approaches and demonstrating the 
performance gains achieved through full-stack optimization. 

III. DETAILS 
To achieve high performance in double-precision matrix 

multiplication, a custom DGEMM routine was implemented, 
optimized across multiple architectural layers, including 
instruction-level parallelism, memory hierarchy, and thread-
level concurrency. This section outlines the core techniques 
used: vectorized micro-kernel design with AVX2 and FMA, 
multi-level cache blocking, aligned memory allocation, and 
multithreading with Pthreads. 

 

A. Two-Level Cache Blocking 

To efficiently utilize the memory hierarchy, the matrices are 
partitioned into panels using two-level blocking (Fig. 1): 

• Outer blocks: parameters KC, MC, and NC are tuned 
to fit working blocks of A, B, and C into the L2 
cache. 

• Inner blocks: within each panel, the micro-kernel 
operates on L1-cache-resident subblocks of size 6×8. 

This technique reduces cache misses and increases temporal 
locality, ensuring that reused data stays in cache during inner 
loops. Block sizes were experimentally tuned based on the 
target CPU’s cache sizes and associativity to avoid conflict 
misses. 
 

B. Vectorized Micro-Kernel with AVX2 FMA 
At the core of the implementation is a 6×8 register-level 
micro-kernel designed to utilize AVX2 instructions and fused 
multiply-add (FMA) operations (Fig. 2). Each micro-kernel 
computes a 6×8 block of the result matrix C by loading and 
broadcasting rows of A and performing vectorized FMA with 
corresponding columns of B. The use of AVX2 intrinsics 
allows simultaneous computation on 4 double-precision 
floating-point numbers, enabling a total of 24 operations per 
FMA instruction cycle. 

AVX2 has 16 YMM registers. Since each YMM register 
can accommodate four double-precision floating-point values, 
executing a 6x8 tile requires 12 registers (6 * (8 / 4) = 12). 
Three registers are allocated for temporary values (a, b0, b1), 
leaving only a single register spare, which makes the 6x8 tile 
size a well-suited configuration. 

Loop unrolling is applied to maximize instruction 
throughput, and careful register allocation ensures minimal 
spilling. The kernel minimizes loads by reusing values in 
registers and performs blind stores to write results without 
unnecessary reads, improving store throughput. 

 

C. Memory Alignment 
To ensure efficient vector loads and reduce cache line splits, 
all matrices are allocated using posix_memalign, guaranteeing 
alignment to 32-byte boundaries, which is required by AVX2 
loads and stores. Aligned memory enables the use of 
_mm256_load_pd and _mm256_store_pd instructions 
without penalties. 

Fig. 1. Two-Level Cache Blocking 
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Additionally, memory padding is applied to avoid false 
sharing and alignment conflicts across cache lines, especially 
in multi-threaded scenarios. 

 

D. Thread-Level Parallelism with Pthreads 

Parallelization is achieved using POSIX threads, with a static 
workload partitioning strategy. The outermost loop over 
matrix rows is divided equally among threads, each operating 
on disjoint memory regions of matrix C. This eliminates the 
need for synchronization primitives during computation and 
ensures thread safety. 

Thread affinity is optionally set to improve data locality 
on NUMA systems. The manual thread management provided 
by Pthreads offers finer control compared to OpenMP, 
enabling optimizations such as minimizing context switches 
and avoiding oversubscription. 

 

E. Compiler Optimizations 

The program is compiled using the GCC compiler with 
aggressive optimization flags: -O3 -march=native -ffast-math 
-mfma -funroll-loops -pthread 

These flags enable vectorization, loop unrolling, 
instruction scheduling, and utilization of FMA units. The           
-march=native flag ensures that the compiler targets the host 
machine’s specific architecture, unlocking hardware-specific 
instructions and optimizations. 

F. Results 

The implementation is evaluated on an Intel Core i7 10750H 
CPU running WSL2 Ubuntu 22.04 OS. Performance profiling 
is conducted using the perf tool to obtain detailed execution 
metrics. Fig. 3 shows the actual CPU core cycles executed at 
current frequency rate (cycles) and CPU core cycles executed 
at base frequency rate (ref-cycles). Given a base frequency of 
2.6 GHz, these measurements enable a direct calculation of 
the effective CPU frequency, illustrated in Fig. 4. The analysis 
shows that the processor sustained an average operating 
frequency of approximately 3.6 GHz during execution. 
 

 
Fig. 3. Cycles per logical processor 

Fig. 2. Vectorized Micro-Kernel with AVX2 and FMA 
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Fig. 4. Frequencies per logical processor 

The DGEMM operation involves 2n3 floating point 
operations (FLOPs). Using the total FLOP count together with 
the measured average CPU frequency and an execution time 
of 0.85 seconds, FLOPs per core per cycle can be calculated, 
as presented in equation (1). 
 

𝑐𝑐 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑡𝑡 ∗ 𝑓𝑓 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=  

2 ∗  40962

0.85 ∗ 3.6 ∗ 109 ∗ 6
≈ 7.5   (1) 

 
The AVX2 YMM register accommodates four double-

precision (fp64) values. Each fused multiply-add (FMA) 
instruction performs two FLOPs. The throughput of FMA 
instructions on the Comet Lake microarchitecture is 0.5 
cycles, meaning that two FMA instructions can be issued per 
cycle [9]. Consequently, the theoretical peak performance is 
4×2×2=16 FLOPs per core per cycle. The implementation 
achieves 46.8% of this theoretical maximum. 

The implementation was further compared against the 
NumPy library (backed by the OpenBLAS implementation). 
Experimental results (Fig. 5) indicate that NumPy completes 
the 4096×4096 DGEMM in 0.98 seconds, whereas the 
proposed implementation achieves the same operation in 0.85 
seconds, corresponding to a 13.3% performance 
improvement. 
 

 
Fig. 5. Execution time comparison 

IV. CONSLUSION 
This paper presents a highly optimized implementation of 

the double-precision general matrix multiplication (DGEMM) 
operation that leverages low-level architectural features of 
modern CPUs, including AVX2 vector instructions, fused 
multiply-add (FMA) micro-kernels, cache-aware blocking, 
memory alignment, and multithreaded execution using 
Pthreads. 

Experimental results demonstrate that meticulous control 
over data movement, memory layout, and thread scheduling 

can lead to substantial performance gains. Specifically, on the 
Intel Core i7 10750H CPU, the implementation outperforms a 
widely used NumPy BLAS backend, achieving a 13.3% 
performance improvement. 

This work reinforces the effectiveness of combining 
architecture-aware blocking strategies with custom SIMD 
kernels and thread-level optimizations for compute-intensive 
workloads. The implementation is available at [10]. 
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