
Optimizing DGEMM Using Vectorized Micro-Kernels
and Memory-Aware Parallelization

 Arman Hovhannisyan

National Polytechnic University of
Armenia

Yerevan, Armenia
e-mail: a.hovhannisyan@polytechnic.am

Abstract—This paper presents a high-performance
implementation of the double-precision general matrix-matrix
multiplication (DGEMM) operation, optimized through
vectorized micro-kernels, two-level cache blocking, memory
alignment, and multithreading techniques. The proposed
approach leverages AVX2, fused multiply-add (FMA)
instructions and a custom 6×8 micro-kernel to maximize
instruction-level parallelism and register utilization. A memory-
aware blocking strategy is employed to fit submatrices within L1
and L2 cache hierarchies, reducing cache misses and improving
data locality. Thread-level parallelism is implemented using
POSIX threads (Pthreads) with explicit workload distribution
and memory affinity control. Empirical evaluations on a 12-core
x86_64 architecture demonstrate a performance advantage,
achieving multiplication of 4096×4096 matrices with a 13.3%
increase in speed compared to the standard NumPy
implementation. The results highlight the impact of fine-grained
control over threading, memory, and instruction scheduling on
achieving superior performance in dense linear algebra
operations.

Keywords—DGEMM, matrix multiplication, multithreading,
high-performance computing, optimization.

I. INTRODUCTION
Matrix multiplication is a foundational operation in

scientific computing, graphics processing, machine learning,
and numerical linear algebra. Among its most widely used
formulations is the double-precision general matrix-matrix
multiplication (DGEMM), which computes C = αAB + βC,
where A, B, and C are dense matrices. Due to its high
computational cost and widespread use, significant research
effort has been devoted to optimizing DGEMM for modern
CPU architectures.

Modern processors offer extensive hardware features,
such as SIMD (Single Instruction, Multiple Data) instruction
sets like AVX2, multi-core parallelism, and deep memory
hierarchies. However, achieving near-peak performance on
such architectures requires a deep understanding of low-level
optimization strategies, including vectorization, cache
blocking, memory alignment, and thread-level parallelism.
High-performance libraries such as Intel MKL and
OpenBLAS have demonstrated the potential of such
techniques, but these implementations often lack fine-grained

control, especially for performance tuning and educational
purposes.

This paper presents a custom DGEMM implementation
that explicitly exploits AVX2 vectorization and fused
multiply-add (FMA) instructions via a 6×8 micro-kernel,
combined with a two-level blocking strategy aligned with L1
and L2 cache sizes. Thread-level parallelism is implemented
using POSIX threads (Pthreads), allowing explicit control
over workload distribution and memory locality. This
approach is also compared with the highly optimized NumPy
implementation (which internally uses BLAS), using large
matrices of size 4096×4096 as a benchmark.

II. RELATED WORK
Optimizing dense matrix multiplication has been a central

topic in high-performance computing (HPC) for decades,
owing to its ubiquity in scientific simulations, machine
learning, and numerical methods. Numerous libraries and
frameworks have been developed to provide optimized
DGEMM implementations, with a focus on exploiting the full
computational capacity of modern processors.

One of the most influential efforts is the Basic Linear
Algebra Subprograms (BLAS) interface, particularly Level 3
routines such as DGEMM. Highly tuned BLAS libraries like
Intel Math Kernel Library (MKL), OpenBLAS, and ATLAS
leverage advanced features of the CPU, including SIMD
vectorization, multi-threading, and cache-aware blocking.
The GotoBLAS architecture [1], which introduced a register-
level blocking strategy and loop restructuring, laid the
groundwork for many of these libraries.

In terms of parallelization strategies, OpenMP is widely
adopted for its simplicity and portability, offering a high-level
abstraction for shared-memory parallelism. However,
OpenMP’s scheduling overhead and limited control over
thread affinity can hinder fine-tuned performance in certain
scenarios [2]. Alternatively, POSIX threads (Pthreads)
provide low-level access to thread creation and
synchronization primitives, enabling more precise
management of workload distribution and memory locality,
albeit at the cost of increased programming complexity.

Vectorization is another key factor in high-performance
DGEMM implementations. Modern CPUs support wide
SIMD instructions (e.g., AVX2, AVX-512), which can
process multiple data elements in parallel. Studies such as [3,

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_81 336

4, 5, 6] have shown that manually crafted vectorized micro-
kernels, when paired with appropriate loop unrolling and
register blocking techniques, can significantly outperform
compiler-generated SIMD code. These approaches allow fine-
grained control over instruction scheduling, register reuse, and
memory alignment, which are often lost in automatic code
generation due to conservative compiler heuristics. These
findings underscore the continued relevance of manual
optimization, especially in scenarios where peak performance
and architectural efficiency are paramount—such as HPC,
scientific computing, and performance-critical numerical
kernels.

Memory hierarchy also plays a critical role in performance
[7]. Cache blocking, also known as tiling, is a well-known
technique for improving the temporal and spatial locality of
memory accesses. Works such as [8] demonstrate how multi-
level blocking strategies, aligned with L1, L2, and even L3
cache sizes, can drastically reduce cache misses and improve
throughput. By carefully partitioning matrices into tiles that
fit into the different layers of the CPU’s memory hierarchy,
these techniques minimize costly memory accesses and
increase temporal locality.

While libraries like NumPy internally rely on optimized
BLAS backends, their performance is ultimately constrained
by the general-purpose nature of those libraries. In contrast,
custom implementations allow for architecture-specific
tuning and provide valuable insights into performance
bottlenecks and optimization strategies.

This paper builds upon the aforementioned techniques by
integrating AVX2 vectorized micro-kernels, two-level
blocking for cache efficiency, memory alignment via
posix_memalign, and fine-grained parallelism using Pthreads.
This work contributes to the ongoing study of low-level
optimization for DGEMM by quantitatively comparing it
against high-level approaches and demonstrating the
performance gains achieved through full-stack optimization.

III. DETAILS
To achieve high performance in double-precision matrix

multiplication, a custom DGEMM routine was implemented,
optimized across multiple architectural layers, including
instruction-level parallelism, memory hierarchy, and thread-
level concurrency. This section outlines the core techniques
used: vectorized micro-kernel design with AVX2 and FMA,
multi-level cache blocking, aligned memory allocation, and
multithreading with Pthreads.

A. Two-Level Cache Blocking

To efficiently utilize the memory hierarchy, the matrices are
partitioned into panels using two-level blocking (Fig. 1):

• Outer blocks: parameters KC, MC, and NC are tuned
to fit working blocks of A, B, and C into the L2
cache.

• Inner blocks: within each panel, the micro-kernel
operates on L1-cache-resident subblocks of size 6×8.

This technique reduces cache misses and increases temporal
locality, ensuring that reused data stays in cache during inner
loops. Block sizes were experimentally tuned based on the
target CPU’s cache sizes and associativity to avoid conflict
misses.

B. Vectorized Micro-Kernel with AVX2 FMA
At the core of the implementation is a 6×8 register-level
micro-kernel designed to utilize AVX2 instructions and fused
multiply-add (FMA) operations (Fig. 2). Each micro-kernel
computes a 6×8 block of the result matrix C by loading and
broadcasting rows of A and performing vectorized FMA with
corresponding columns of B. The use of AVX2 intrinsics
allows simultaneous computation on 4 double-precision
floating-point numbers, enabling a total of 24 operations per
FMA instruction cycle.

AVX2 has 16 YMM registers. Since each YMM register
can accommodate four double-precision floating-point values,
executing a 6x8 tile requires 12 registers (6 * (8 / 4) = 12).
Three registers are allocated for temporary values (a, b0, b1),
leaving only a single register spare, which makes the 6x8 tile
size a well-suited configuration.

Loop unrolling is applied to maximize instruction
throughput, and careful register allocation ensures minimal
spilling. The kernel minimizes loads by reusing values in
registers and performs blind stores to write results without
unnecessary reads, improving store throughput.

C. Memory Alignment
To ensure efficient vector loads and reduce cache line splits,
all matrices are allocated using posix_memalign, guaranteeing
alignment to 32-byte boundaries, which is required by AVX2
loads and stores. Aligned memory enables the use of
_mm256_load_pd and _mm256_store_pd instructions
without penalties.

Fig. 1. Two-Level Cache Blocking

337

Additionally, memory padding is applied to avoid false
sharing and alignment conflicts across cache lines, especially
in multi-threaded scenarios.

D. Thread-Level Parallelism with Pthreads

Parallelization is achieved using POSIX threads, with a static
workload partitioning strategy. The outermost loop over
matrix rows is divided equally among threads, each operating
on disjoint memory regions of matrix C. This eliminates the
need for synchronization primitives during computation and
ensures thread safety.

Thread affinity is optionally set to improve data locality
on NUMA systems. The manual thread management provided
by Pthreads offers finer control compared to OpenMP,
enabling optimizations such as minimizing context switches
and avoiding oversubscription.

E. Compiler Optimizations

The program is compiled using the GCC compiler with
aggressive optimization flags: -O3 -march=native -ffast-math
-mfma -funroll-loops -pthread

These flags enable vectorization, loop unrolling,
instruction scheduling, and utilization of FMA units. The
-march=native flag ensures that the compiler targets the host
machine’s specific architecture, unlocking hardware-specific
instructions and optimizations.

F. Results

The implementation is evaluated on an Intel Core i7 10750H
CPU running WSL2 Ubuntu 22.04 OS. Performance profiling
is conducted using the perf tool to obtain detailed execution
metrics. Fig. 3 shows the actual CPU core cycles executed at
current frequency rate (cycles) and CPU core cycles executed
at base frequency rate (ref-cycles). Given a base frequency of
2.6 GHz, these measurements enable a direct calculation of
the effective CPU frequency, illustrated in Fig. 4. The analysis
shows that the processor sustained an average operating
frequency of approximately 3.6 GHz during execution.

Fig. 3. Cycles per logical processor

Fig. 2. Vectorized Micro-Kernel with AVX2 and FMA

338

Fig. 4. Frequencies per logical processor

The DGEMM operation involves 2n3 floating point
operations (FLOPs). Using the total FLOP count together with
the measured average CPU frequency and an execution time
of 0.85 seconds, FLOPs per core per cycle can be calculated,
as presented in equation (1).

𝑐𝑐 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑡𝑡 ∗ 𝑓𝑓 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
=

2 ∗ 40962

0.85 ∗ 3.6 ∗ 109 ∗ 6
≈ 7.5 (1)

The AVX2 YMM register accommodates four double-

precision (fp64) values. Each fused multiply-add (FMA)
instruction performs two FLOPs. The throughput of FMA
instructions on the Comet Lake microarchitecture is 0.5
cycles, meaning that two FMA instructions can be issued per
cycle [9]. Consequently, the theoretical peak performance is
4×2×2=16 FLOPs per core per cycle. The implementation
achieves 46.8% of this theoretical maximum.

The implementation was further compared against the
NumPy library (backed by the OpenBLAS implementation).
Experimental results (Fig. 5) indicate that NumPy completes
the 4096×4096 DGEMM in 0.98 seconds, whereas the
proposed implementation achieves the same operation in 0.85
seconds, corresponding to a 13.3% performance
improvement.

Fig. 5. Execution time comparison

IV. CONSLUSION
This paper presents a highly optimized implementation of

the double-precision general matrix multiplication (DGEMM)
operation that leverages low-level architectural features of
modern CPUs, including AVX2 vector instructions, fused
multiply-add (FMA) micro-kernels, cache-aware blocking,
memory alignment, and multithreaded execution using
Pthreads.

Experimental results demonstrate that meticulous control
over data movement, memory layout, and thread scheduling

can lead to substantial performance gains. Specifically, on the
Intel Core i7 10750H CPU, the implementation outperforms a
widely used NumPy BLAS backend, achieving a 13.3%
performance improvement.

This work reinforces the effectiveness of combining
architecture-aware blocking strategies with custom SIMD
kernels and thread-level optimizations for compute-intensive
workloads. The implementation is available at [10].

REFERENCES
[1] K. Goto and R. Van De Geijn, “High-performance implementation of

the Level-3 BLAS,” ACM Transactions on Mathematical Software
(TOMS), vol. 35, no. 1, pp. 1–14, 2008.

[2] A. E. Eichenberger, C. Terboven, M. Wong, and D. an Mey “The
Design of OpenMP Thread Affinity”, Proceedings of IWOMP 2012,
Lecture Notes in Computer Science, vol 7312. Springer, Berlin,
Heidelberg, pp.15-28, 2012.

[3] S. Boehm, (2022) Fast Multidimensional Matrix Multiplication on
CPU from Scratch. [Online]. Available:
https://siboehm.com/articles/22/Fast-MMM-on-CPU

[4] X. Su, X. Liao and J. Xue, “Automatic generation of fast BLAS3-
GEMM: A portable compiler approach,” IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Austin, TX,
USA, pp. 122-133, 2017.

[5] H. Martínez, S. Catalán, F.D. Igual, J.R. Herrero, R. Rodríguez-
Sánchez, and E.S. Quintana-Ortí, “Co-Design of the Dense Linear
Algebra Software Stack for Multicore Processors,” 2023,
arXiv:2304.14480.

[6] G. Alaejos, A. Castelló, H. Martínez, P. Alonso-Jordá, F. D. Igual, and
E. S. Quintana-Ortí, “Micro-kernels for portable and efficient matrix
multiplication in deep learning,” The Journal of Supercomputing,
vol. 79, pp. 8124–8147, 2023.

[7] U. Drepper, “What every programmer should know about memory”,
2007. https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

[8] S. Williams et al., “Optimization of sparse matrix–vector
multiplication on emerging multicore platforms,” Proceedings of
SC'07, pp. 1–12, 2007.

[9] A. Abel and J. Reineke, “uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel
Microarchitectures”, ASPLOS '19: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, Providence, RI, USA, pp. 673-686,
2019.

[10] Proposed implementation, [Online]. Available:
https://github.com/aahovhannisyan/dgemm

0.7

0.8

0.9

1

Execution time (seconds) on Intel
Core i7 10750H

NumPy (OpenBLAS) Proposed implementation

339

	I. Introduction
	II. Related Work
	III. Details
	A. Two-Level Cache Blocking
	B. Vectorized Micro-Kernel with AVX2 FMA
	C. Memory Alignment
	D. Thread-Level Parallelism with Pthreads
	E. Compiler Optimizations
	F. Results

	IV. Conslusion
	References

