
Load Balancing in Adaptive Fog Computing: Research
Problems and Solutions Framework

 Narek Naltakyan

National Polytechnic University of
Armenia

Yerevan, Armenia
e-mail: nareknaltakyan1@gmail.com

Abstract—Fog computing environments present unique
challenges, one of which is load balancing. Problems arise here
due to the geographical distribution of nodes and different
computational capabilities. This paper presents a comprehensive
framework designed to solve load balancing problems in
adaptive fog computing systems through dynamic spatial
responsibility allocation and hierarchical request distribution. It
is recommended to use a multi-tiered load balancing architecture
that combines geographic area adaptation, cooperative
congestion management mechanisms, and threshold scaling.
This framework presents three main strategies.

1. based on request density -> dynamic area resizing
2. for high demand scenarios -> horizontal scaling

with load balancer deployment
3. through master node coordination for extreme load

conditions -> hierarchical congestion management.

Keywords—Load Balancing, Adaptive Fog Computing,
Dynamic Area Management, Hierarchical Overflow, Edge
Computing, Resource Orchestration.

I. INTRODUCTION
Currently, the exponential growth of Internet of Things

(IoT) devices poses unprecedented challenges in managing
the computational load of distributed fog computing
infrastructures [1]. Known solutions designed for centralized
cloud environments are not able to solve the problem of fog
computing. Load balancing in fog computing must consider:

1. The geographic location of services
2. Computing resources
3. Network latency constraints
4. Movement patterns of IoT devices [2]
Existing solutions typically use static load balancing

strategies that cannot adapt to the dynamic nature of edge
environments, leading to problems [3].

1) 1.1 Problem Statement

There are several load-balancing critical challenges that
face fog computing architectures [4]:

1. Geographic Load Imbalance: The geographical
distribution of requests can be uneven and lead to
"hot spots" in the system, which can lead to nodes

that are very busy and nodes that do not receive any
requests at all [5].

2. Static Resource Allocation: Each node is assigned
a fixed area of responsibility, which prevents it from
changing depending on the load [6].

3. Cascade Failure Risk: Overloaded nodes have no
mechanisms to relieve congestion [7].

4. Limited Coordination: Nodes operate in isolation,
which prevents load sharing with neighboring nodes
[8].

5. Scaling Inefficiency: Due to the lack of intelligent
mechanisms that could distribute the load in real time
and adjust infrastructure based on demand [9].

2) 1.2 Research Contributions

This paper presents a framework for adaptive fog
computing that is an innovative solution for load balancing:

• Dynamic Area-Based Load Distribution:
Automatically adjust the spatial dimensions of a
node's area of responsibility based on workload.

• Threshold-Driven Scaling Strategy: When the area
of responsibility has shrunk to a minimum size and
the load does not decrease, then another node should
be added to the area of responsibility.

• Hierarchical Overflow Management: Cooperative
request processing with neighboring nodes via the
master node.

• Adaptive Decision Framework: A comprehensive
decision algorithm that selects the most optimal of a
given set of options for load balancing at time X,
based on system resources and request requirements.

CSIT Conference 2025, Yerevan, Armenia, September 22 - 26

https://doi.org/10.51408/csit2025_83 344

II. HIERARCHICAL LOAD BALANCING ARCHITECTURE

Figure 1: Hierarchical Load Balancing Architecture

1) 2 Core Components

a) 2.1 Area Manager

The area manager is responsible for dynamically adjusting
the geographic area of responsibility of each node based on
load metrics [10]:

• Expansion Controller: Increases the size of the area
when the load is below a specified threshold

• Contraction Controller: Decreases the size of the
area when the load exceeds a specified threshold or
capacity

• Boundary Coordinator: Manages border incidents:
smooth transfers of areas

b) 2.2 Load Monitor

Continuously tracks system metrics to inform load
balancing decisions [11]:

• Request rate (requests/second)
• Processing latency (milliseconds)
• Queue length (pending requests)
• Resource utilization (CPU, memory, bandwidth)

c) 2.3 Scaling Orchestrator

Manages infrastructure scaling based on load conditions
[12]:

• Horizontal Scaling: Deploys additional fog nodes
and load balancers

• Vertical Scaling: Adjusts resource allocation within
existing nodes

• Geographic Scaling: Redistributes areas across
available nodes

d) 2.4 Overflow Manager

Handles requests that exceed local capacity [13]:

• Local Overflow: Redirects to load balancer when
available

• Regional Overflow: Coordinates with master node
for neighbor assistance

• Cloud Overflow: Escalates to cloud when fog
capacity exhausted

2) 2․5 Load Balancing States and Transitions

The system operates in five distinct states, transitioning
based on load conditions [14]:

Table 2: System States and Transition Conditions

State Description Load
Range

Active
Mechanisms

Transition
Triggers

Idle

Minimal
load,

maximum
area

0-20% Area at
maximum

Load >
20% →
Normal

Normal
Balanced
load and

area

20-
60%

Dynamic area
adjustment

Load >
60% →

High

High

Elevated
load,

contracting
area

60-
80%

Area
contraction,

preparation for
scaling

Load >
80% →
Critical

Critical

Near
capacity,
minimum

area

80-
95%

Load balancer
deployment,
horizontal

scaling

Load >
95% →

Overflow

Overflow
Exceeds

local
capacity

>95%

Master node
coordination,

cloud
offloading

Load <
80% →

High

3) 2.6 Request Flow Architecture

The framework implements intelligent request routing
based on current system state [15]:

1. Initial Request Reception: IoT device sends request
to assigned fog node

345

2. Load Assessment: Fog node evaluates current
capacity

3. Processing Decision:
o If capacity available → Process locally
o If at capacity but area > minimum →

Contract area and process
o If at minimum area and capacity → Deploy

load balancer
o If overwhelmed → Invoke overflow

procedures

III. LOAD BALANCING ALGORITHMS
1) 4.1 Dynamic Area Adjustment Algorithm

The core algorithm for managing geographic
responsibility areas, inspired by distributed systems research
[16]:
Algorithm 1: DynamicAreaAdjustment(node, currentLoad,
requestRate)
Input: Fog node, current load percentage, request arrival rate
Output: Updated area boundaries

1: calculateOptimalArea(node)
2: IF currentLoad > THRESHOLD_HIGH AND area >
AREA_MIN THEN
3: newArea ← area × CONTRACTION_FACTOR
4: redistributeBoundaries(newArea)
5: notifyAffectedDevices()
6: ELSE IF currentLoad < THRESHOLD_LOW AND area
< AREA_MAX THEN
7: newArea ← area × EXPANSION_FACTOR
8: IF canExpand(newArea) THEN
9: redistributeBoundaries(newArea)
10: notifyAffectedDevices()
11: END IF
12: ELSE IF currentLoad > THRESHOLD_CRITICAL
AND area ≤ AREA_MIN THEN
13: triggerScalingProcedure()
14: END IF
15: RETURN updatedBoundaries

2) 4.2 Intelligent Scaling Decision Algorithm

Determines when and how to scale infrastructure [17]:
Algorithm 2: ScalingDecision(node, loadMetrics,
neighborStatus)
Input: Fog node, load metrics, neighbor availability
Output: Scaling action

1: IF sustainedHighLoad(loadMetrics, TIME_WINDOW)
THEN
2: IF area == AREA_MIN AND loadBalancerAvailable()
THEN
3: deployLoadBalancer()
4: addFogNode()
5: redistributeLoad()
6: ELSE IF neighborsAvailable(neighborStatus) THEN
7: requestNeighborAssistance()
8: ELSE
9: initiateCloudOffload()

10: END IF
11: END IF
12: RETURN scalingAction

3) 4.3 Hierarchical Overflow Management Algorithm

Coordinates overflow handling through master node [18]:
Algorithm 3: HierarchicalOverflow(request, sourceNode,

masterNode)
Input: Overflow request, source fog node, regional master

node
Output: Request handling decision

1: masterNode.receiveOverflowRequest(request,
sourceNode)
2: availableNodes ←
masterNode.findAvailableNeighbors(sourceNode)
3: IF availableNodes ≠ ∅ THEN
4: targetNode ← selectOptimalNode(availableNodes,
request)
5: IF targetNode.canAccept(request) THEN
6: forwardRequest(request, targetNode)
7: updateLoadStatistics()
8: ELSE
9: GOTO line 10
10: END IF
11: ELSE
12: IF cloudAvailable() THEN
13: offloadToCloud(request)
14: ELSE
15: queueRequest(request)
16: END IF
17: END IF
18: RETURN handlingDecision

IV. CONCLUSION

This paper presented a framework for load balancing in
adaptive fog computing environments using dynamic zonal
responsibility distribution and hierarchical congestion
management. Our approach overcomes the limitations of
existing solutions by integrating three mechanisms: (1)
dynamic adjustment of the geographic area based on load
conditions, (2) intelligent scaling of the infrastructure by
deploying a load balancer, and (3) coordinated congestion
management by a master node architecture.

Our work provides a foundation for the creation of
adaptive fog computing systems that respond to dynamic load
conditions by intelligent geographic and infrastructure
adaptation. In the ever-evolving field of fog computing,
especially with the support of mission-critical IoT
applications, the load balancing mechanisms presented here
will become more important for providing reliable, efficient,
and scalable edge computing services.

Future research will focus on predictive load management
on the application of machine learning for, the development
of privacy-preserving federated load balancing mechanisms,
and the expansion of the framework to support new edge AI
workloads. The issues identified in this study provide great
opportunities for improving load balancing in fog computing.

346

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and
its role in the internet of things," Proceedings of the MCC Workshop
on Mobile Cloud Computing, pp. 13-16, 2012.

[2] M. Taneja and A. Davy, "Resource aware placement of IoT application
modules in fog-cloud computing paradigm," Proceedings of the
IFIP/IEEE Symposium on Integrated Network and Service
Management, pp. 1222-1228, 2017.

[3] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, and A. X. Liu,
"Dynamic resource allocation for load balancing in fog environment,"
Wireless Communications and Mobile Computing, 2018.

[4] F. H. Rahman, T. W. Au, S. S. Newaz, and W. S. Suhaili, "A location-
aware task offloading framework for fog computing environment,"
Neural Computing and Applications, vol. 31, no. 8, pp. 3373-3387,
2019.

[5] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A.
Niakanlahiji, and J. P. Jue, "All one needs to know about fog
computing and related edge computing paradigms: A complete
survey," Journal of Systems Architecture, vol. 98, pp. 289-330, 2019.

[6] R. Mahmud, R. Kotagiri, and R. Buyya, "Fog computing: A taxonomy,
survey and future directions," Internet of Everything, pp. 103-130,
2018.

[7] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, "Fog computing:
from architecture to edge computing and big data processing," The
Journal of Supercomputing, vol. 75, no. 4, pp. 2070-2105, 2019.

[8] M. Aazam, S. Zeadally, and K. A. Harras, "Offloading in fog
computing for IoT: Review, enabling technologies, and research
opportunities," Future Generation Computer Systems, vol. 87, pp.
278-289, 2018.

[9] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, "A comprehensive survey on fog computing: State-
of-the-art and research challenges," IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 416-464, 2018.

[10] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A.
Y. Zomaya, "Secure and sustainable load balancing of edge data
centers in fog computing," IEEE Communications Magazine, vol. 56,
no. 5, pp. 60-65, 2018.

[11] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
"Optimized IoT service placement in the fog," Service Oriented
Computing and Applications, vol. 11, no. 4, pp. 427-443, 2017.

[12] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, "A
survey on mobile edge networks: Convergence of computing, caching
and communications," IEEE Access, vol. 5, pp. 6757-6779, 2017.

[13] V. B. Souza, X. Masip-Bruin, E. Marín-Tordera, W. Ramírez, and S.
Sánchez, "Towards distributed service allocation in fog-to-cloud
scenarios," IEEE Global Communications Conference, pp. 1-6, 2016.

[14] A. Brogi and S. Forti, "QoS-aware deployment of IoT applications
through the fog," IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185-1192, 2017.

[15] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, "Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption," IEEE Internet of Things Journal, vol. 3, no. 6, pp.
1171-1181, 2016.

[16] X. Q. Pham and E. N. Huh, "Towards task scheduling in a cloud-fog
computing system," 18th Asia-Pacific Network Operations and
Management Symposium, pp. 1-4, 2016.

[17] K. Intharawijitr, K. Iida, and H. Koga, "Analysis of fog model
considering computing and communication latency in 5G cellular
networks," IEEE International Conference on Pervasive Computing
and Communication Workshops, pp. 1-4, 2016.

[18] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
"Dynamic service migration and workload scheduling in edge-
clouds," Performance Evaluation, vol. 91, pp. 205-228, 2015.

347

	I. Introduction
	1) 1.1 Problem Statement
	2) 1.2 Research Contributions

	II. Hierarchical Load Balancing Architecture
	1) 2 Core Components
	a) 2.1 Area Manager
	b) 2.2 Load Monitor
	c) 2.3 Scaling Orchestrator
	d) 2.4 Overflow Manager

	2) 2․5 Load Balancing States and Transitions
	3) 2.6 Request Flow Architecture

	III. Load Balancing Algorithms
	1) 4.1 Dynamic Area Adjustment Algorithm
	2) 4.2 Intelligent Scaling Decision Algorithm
	3) 4.3 Hierarchical Overflow Management Algorithm

	IV. Conclusion
	References

